scholarly journals Relevance of AIF/CypA Lethal Pathway in SH-SY5Y Cells Treated with Staurosporine

2021 ◽  
Vol 23 (1) ◽  
pp. 265
Author(s):  
Mariarosaria Conte ◽  
Rosanna Palumbo ◽  
Alessandra Monti ◽  
Elisabetta Fontana ◽  
Angela Nebbioso ◽  
...  

The AIF/CypA complex exerts a lethal activity in several rodent models of acute brain injury. Upon formation, it translocates into the nucleus of cells receiving apoptotic stimuli, inducing chromatin condensation, DNA fragmentation, and cell death by a caspase-independent mechanism. Inhibition of this complex in a model of glutamate-induced cell death in HT-22 neuronal cells by an AIF peptide (AIF(370-394)) mimicking the binding site on CypA, restores cell survival and prevents brain injury in neonatal mice undergoing hypoxia-ischemia without apparent toxicity. Here, we explore the effects of the peptide on SH-SY5Y neuroblastoma cells stimulated with staurosporine (STS), a cellular model widely used to study Parkinson’s disease (PD). This will pave the way to understanding the role of the complex and the potential therapeutic efficacy of inhibitors in PD. We find that AIF(370-394) confers resistance to STS-induced apoptosis in SH-SY5Y cells similar to that observed with CypA silencing and that the peptide works on the AIF/CypA translocation pathway and not on caspases activation. These findings suggest that the AIF/CypA complex is a promising target for developing novel therapeutic strategies against PD.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shuiqiao Liu ◽  
Mi Zhou ◽  
Zhi Ruan ◽  
Yanan Wang ◽  
Calvin Chang ◽  
...  

Abstract Background Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. Methods AIF splicing induction in brain was determined by multiple approaches including 5′ RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. Results We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2–4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. Conclusions We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Carina Colturato-Kido ◽  
Rayssa M. Lopes ◽  
Hyllana C. D. Medeiros ◽  
Claudia A. Costa ◽  
Laura F. L. Prado-Souza ◽  
...  

Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a “double-edged sword” contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.


1999 ◽  
Vol 112 (11) ◽  
pp. 1755-1760
Author(s):  
R.S. Benson ◽  
C. Dive ◽  
A.J. Watson

The role of intracellular acidification in the execution phase of apoptosis is not well understood. Here we examine the effect of Bcl-2 over-expression on intracellular acidification occurring during apoptosis. We found, that in CEM cells, neither DEX nor VP16-induced apoptosis lead to a significant change in intracellular pH (pHi). Furthermore, we found that shifting pHi away from physiological values was unable to induce chromatin condensation or poly(ADP-ribose) polymerase (PARP) cleavage in the presence of Bcl-2 over-expression. However, it was found that maximum chromatin condensation and PARP cleavage occurred at near physiological pHi values. Taken together these data suggest that intracellular acidification does not trigger the effector phase of CEM apoptosis.


1999 ◽  
Vol 145 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Jiandi Zhang ◽  
Mary C. Reedy ◽  
Yusuf A. Hannun ◽  
Lina M. Obeid

During apoptosis, the cell actively dismantles itself and reduces cell size by the formation and pinching off of portions of cytoplasm and nucleus as “apoptotic bodies.” We have combined our previously established quantitative assay relating the amount of release of [3H]-membrane lipid to the degree of apoptosis with electron microscopy (EM) at a series of timepoints to study apoptosis of lymphoid cells exposed to vincristine or etoposide. We find that the [3H]-membrane lipid release assay correlates well with EM studies showing the formation and release of apoptotic bodies and cell death, and both processes are regulated in parallel by inducers or inhibitors of apoptosis. Overexpression of Bcl-2 or inhibition of caspases by DEVD inhibited equally well the activation of caspases as indicated by PARP cleavage. They also inhibited [3H]-membrane lipid release and release of apoptotic bodies. EM showed that cells overexpressing Bcl-2 displayed near-normal morphology and viability in response to vincristine or etoposide. In contrast, DEVD did not prevent cell death. Although DEVD inhibited the chromatin condensation, PARP cleavage, release of apoptotic bodies, and release of labeled lipid, DEVD-treated cells showed accumulation of heterogeneous vesicles trapped in the condensed cytoplasm. These results suggest that inhibition of caspases arrested the maturation and release of apoptotic bodies. Our results also imply that Bcl-2 regulates processes in addition to caspase activation.


2011 ◽  
Vol 22 (10) ◽  
pp. 1766-1779 ◽  
Author(s):  
Karina Kaczmarek ◽  
Maja Studencka ◽  
Andreas Meinhardt ◽  
Krzysztof Wieczerzak ◽  
Sven Thoms ◽  
...  

 Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell–specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells’ apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 279 ◽  
Author(s):  
Francesco Di Meo ◽  
Rossana Cuciniello ◽  
Sabrina Margarucci ◽  
Paolo Bergamo ◽  
Orsolina Petillo ◽  
...  

Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress—especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luciana Isaja ◽  
Sofía Mucci ◽  
Jonathan Vera ◽  
María Soledad Rodríguez-Varela ◽  
Mariela Marazita ◽  
...  

AbstractHuman embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O2). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined. In order to evaluate the effect of chemically mimicked hypoxia on hPSCs cell survival, we analyzed changes in cell viability and several aspects of apoptosis triggered by CoCl2 and dimethyloxalylglycine (DMOG). Mitochondrial function assays revealed a decrease in cell viability at 24 h post-treatments. Moreover, we detected chromatin condensation, DNA fragmentation and CASPASE-9 and 3 cleavages. In this context, we observed that P53, BNIP-3, and NOXA protein expression levels were significantly up-regulated at different time points upon chemical hypoxia induction. However, only siRNA-mediated downregulation of NOXA but not HIF-1α, HIF-2α, BNIP-3, and P53 did significantly affect the extent of cell death triggered by CoCl2 and DMOG in hPSCs. In conclusion, chemically mimicked hypoxia induces hPSCs cell death by a NOXA-mediated HIF-1α and HIF-2α independent mechanism.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3392-3392
Author(s):  
Stavros Giagkousiklidis ◽  
Hubert Kasperczyk ◽  
Meike Vogler ◽  
Klaus-Michael Debatin ◽  
Simone Fulda

Abstract Smac is released from mitochondria during the onset of apoptosis and promotes apoptosis via abrogating the binding of Inhibitor of Apoptosis Proteins (IAPs) to caspases. γ-irradiation is one of the most commonly used therapeutic approaches in clinical oncology, which triggers cell death in tumors via DNA and/or membrane damage. Since we recently found that Smac agonists sensitized even resistant tumors for apoptosis induced by death receptor ligation or anticancer drugs, we investigated the effect of Smac agonists on apoptosis following γ-irradiation in the present study. Here, we report for the first time that overexpression of mitochondrial or cytosolic Smac significantly increased radiosensitivity of various cancers. Transfection-enforced expression of Smac strongly enhanced apoptosis upon γ-irradiation in SH-EP neuroblastoma cells, which were resistant to g-irradiation in the absence of Smac. Importantly, Smac overexpression also reduced clonogenic tumor cell survival following γ-irradiation. Analysis of signaling pathways revealed that overexpression of Smac resulted in more rapid and more potent activation of caspase pathways, e.g caspase-2, -3,- 8, -9. The broad range caspase inhibitor zVAD.fmk abrogated apoptosis upon γ-irradiation indicating that apoptosis was mediated by caspases. In addition, overexpression of Smac promoted loss of mitochondrial membrane potential and cytochrome c release upon γ-irradiation. Interestingly, γ-irradiation-induced mitochondrial perturbations were blocked in the presence of the caspase inhibitor zVAD.fmk suggesting that caspase activity was required for mitochondrial alterations in response to γ-irradiation. Notably, cell cycle alterations and activation of NF-κB occured in a similar manner in vector control and Smac-transfected cells suggesting that Smac did not significantly alter the initial cellular stress response upon γ-irradiation. Importantly, Smac overexpression sensitized various tumor cell lines for γ-irradiation-induced apoptosis, indicating that the sensitization effect of Smac for γ-irradiation was not restricted to a particular cell type. By demonstrating that Smac can sensitize various tumor cells towards γ-irradiation-induced cell death, our findings provide for the first time evidence that Smac agonists may be a useful tool to enhance radiosensitivity in a variety of human cancers.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 891-891
Author(s):  
Katia Beider ◽  
Valeria Voevoda ◽  
Hanna Bitner ◽  
Evgenia Rosenberg ◽  
Hila Magen ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a neoplastic disorder that is characterized by clonal proliferation of plasma cells in the bone marrow (BM). Despite the initial efficacious treatment, MM patients often become refractory to common anti-MM drugs, therefore novel therapies are in need. Pan-histone deacetylase (HDAC) inhibitor panobinostat exerts multiple cytotoxic actions in MM cells in vitro, and was approved for the treatment of relapsed/refractory MM in combination with bortezomib and dexamethasone. Although having promising anti-MM properties, panobinostat lacks therapeutic activity as monotherapy. The aim of the current study was to elucidate the mechanisms underlying MM resistance to panobinostat and to define strategies to overcome it. Results: Panobinostat at the low concentrations (IC50 5-30 nM) suppressed the viability in MM cell lines (n=7) and primary CD138+ cells from MM patients (n=8) in vitro. Sensitivity to panobinostat correlated with reduced expression of chemokine receptor CXCR4, while overexpression of CXCR4 or its ligand CXCL12 in RPMI8226 and CAG MM cell lines significantly (p<0.001) increased their resistance to panobinostat, pointing to the role of the CXCR4 axis in HDACi response. Notably, similar expression levels of class I HDACs (HDAC1-3) were detected in MM cells with either low or high CXCR4. Interaction with BM stromal cells that represent the source of CXCL12 also protected MM cells from panobinostat-induced apoptosis, further strengthening a role for CXCR4 downstream pathway. Decreased sensitivity to cytotoxic effect was concomitant with reduced histone (H3K9 and H4K8) acetylation in response to panobinostat treatment. In addition, resistance to HDACi was associated with the reversible G0/G1 cell growth arrest, whereas sensitivity was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators involved in CXCR4-mediated HDACi resistance revealed the pro-survival AKT/mTOR pathway to be regulated by both CXCR4 over-expression and interaction with BMSCs. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance and induced synergistic cell death of MM cell lines and primary MM cells, but not of normal mononuclear cells (CI<0.4). This effect was concurrent with the increase in DNA double strand breaks, histone H2AX phosphorylation, loss of Dψm, cytochrome c release, caspase 3 activation and PARP cleavage. The increase in DNA damage upon combinational treatment was not secondary to the apoptotic DNA fragmentation, as it occurred similarly when apoptosis onset was blocked by caspase inhibitor z-VAD-fmk. Kinetics studies also confirmed that panobinostat-induced DNA damage preceded apoptosis induction. Strikingly, combined panobinostat/everolimus treatment resulted in sustained DNA damage and irreversible suppression of MM cell proliferation accompanied by robust apoptosis, in contrast to the modest effects induced by single agent. Gene expression analysis revealed distinct genetic profiles of single versus combined exposures. Whereas panobinostat increased the expression of cell cycle inhibitors GADD45G and p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated DNA repair genes, including RAD21, Ku70, Ku80 and DNA-PKcs. Furthermore, combined treatment markedly decreased both mRNA and protein expression of anti-apoptotic factors survivin and BCL-XL, checkpoint regulator CHK1, and G2/M-specific factors PLK1, CDK1 and cyclin B1, therefore suppressing the DNA damage repair and inhibiting mitotic progression. Given the anti-apoptotic role of p21, the synergistic lethal effect of everolimus could be attributed to its ability to suppress p21 induction by panobinostat ensuing the shift in the DNA damage response toward apoptosis. Conclusions: Collectively, our findings indicate that CXCR4/CXCL12 activity promotes the resistance of MM cells to HDACi with panobinostat through mTOR activation. Inhibition of mTOR by everolimus synergizes with panobinostat by simultaneous suppression of p21, G2/M mitotic factors and DNA repair machinery, rendering MM cells incapable of repairing accumulated DNA damage and promoting their apoptosis. Our results unravel the mechanism responsible for strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel therapeutic strategy to eradicate MM. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (5) ◽  
pp. 2000-2013 ◽  
Author(s):  
Niklas Finnberg ◽  
Joshua J. Gruber ◽  
Peiwen Fei ◽  
Dorothea Rudolph ◽  
Anka Bric ◽  
...  

ABSTRACT DR5 (also called TRAIL receptor 2 and KILLER) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (also called TRAIL and Apo2 ligand). DR5 is a transcriptional target of p53, and its overexpression induces cell death in vitro. However, the in vivo biology of DR5 has remained largely unexplored. To better understand the role of DR5 in development and in adult tissues, we have created a knockout mouse lacking DR5. This mouse is viable and develops normally with the exception of having an enlarged thymus. We show that DR5 is not expressed in developing embryos but is present in the decidua and chorion early in development. DR5-null mouse embryo fibroblasts expressing E1A are resistant to treatment with TRAIL, suggesting that DR5 may be the primary proapoptotic receptor for TRAIL in the mouse. When exposed to ionizing radiation, DR5-null tissues exhibit reduced amounts of apoptosis compared to wild-type thymus, spleen, Peyer's patches, and the white matter of the brain. In the ileum, colon, and stomach, DR5 deficiency was associated with a subtle phenotype of radiation-induced cell death. These results indicate that DR5 has a limited role during embryogenesis and early stages of development but plays an organ-specific role in the response to DNA-damaging stimuli.


Sign in / Sign up

Export Citation Format

Share Document