scholarly journals Antimicrobial Activity of an Extract of Hermetia illucens Larvae Immunized with Lactobacillus casei against Salmonella Species

Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 704 ◽  
Author(s):  
Kyu-Shik Lee ◽  
Eun-Young Yun ◽  
Tae-Won Goo

The expressions of antimicrobial peptides (AMPs) in the larvae of the black soldier fly, Hermetia illucens, were significantly increased by pathogen or stimulant induced innate immunity activation. We immunized H. illucens fifth instar larvae with five different Lactobacillus species, that is, Lactobacillus acidophilus, L. brevis, L. casei, L. fermentum, or L. delbrueckii, to induce the mass production of AMPs and selected optimal immune inducers. Antimicrobial activities in hemolymph and H. illucens larvae (HIL) extract were evaluated against three salmonella species (Salmonella pullorum, Salmonella typhimurium, and Salmonella enteritidis). Highest antimicrobial activity was shown by the hemolymph of HIL immunized by L. casei and its activity was closely linked with the inductions of cecropin 1 (HiCec1) and defensin 1 (HiDef1) gene expressions. Furthermore, antimicrobial activity in hemolymph was stable to heat and pH and the growth of three Salmonella species were dramatically suppressed by HIL hemolymph and extract after immunization with L. casei. The minimal inhibitory concentration (MICs) of L. casei-immunized HIL extract against Staphylococcus aureus, Escherichia coli, and Salmonella species ranged from 100~200 µg/100 µL and no cytotoxicity to CaCo-2 and L929 cells were observed in the concentration range 100~40,000 µg/100 µL. Taken together, the present investigation demonstrates that L. casei-immunized HIL extract is a powerful natural antibiotic and preservative that can prevent contamination by Salmonella species.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2121
Author(s):  
Kyu-Shik Lee ◽  
Eun-Young Yun ◽  
Tae-Won Goo

In the present study, we developed an automatic mass-injection system (AMIS) to produce an extract of infected H. illucens larvae (iHIL-E) and then evaluated antimicrobial peptide (AMP) expressions and assessed the antimicrobial activity of iHIL-E against various pathogens and Lactobacillus species. AMP gene expressions were assessed by real-time quantitative polymerase chain reaction (PCR) and the antimicrobial activities of iHIL-E were estimated using a radial diffusion assay and by determining minimal inhibitory concentrations. Results showed that the antimicrobial activity of HIL extract was effectively enhanced by L. casei infection and that the gene expressions of cecropin 3 and defensin 3 (antimicrobial peptides) were up-regulated. iHIL-E also prevented the growths of Enterococcus faecalis, Streptococcus mutans, and Candida vaginitis (MICs 200, 500, and 1000 µg/100 µL, respectively) and demonstrated high protease resistance. Moreover, the growths of methicillin-resistant Staphylococcus aureus, antibiotic-resistant Pseudomonas aeruginosa and AMP-resistant bacteria, Serratia marcescens, and Pseudomons tolaasii were significantly suppressed by iHIL-E. In addition, although iHIL completely cleared Salmonella species at concentrations of >200 µg/100 µL, Lactobacillus species were unaffected by iHIL at concentrations of <1000 µg/100 µL. The present investigation shows that the devised automatic mass injection system is effective for the mass production of the extract of infected HIL and that this extract is a novel, natural, protease-resistant, antibiotic candidate with broad-spectrum antibiotic activity.


2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Ana Flávia da Silva ◽  
Marisa de Oliveira Lopes ◽  
Cláudio Daniel Cerdeira ◽  
Ingridy Simone Ribeiro ◽  
Isael Aparecido Rosa ◽  
...  

The radish (Raphanus sativus L.) is a vegetable of the Brassicaceae family cultivated worldwide and has several medicinal properties. Its biological activities are related to various secondary metabolites present in the species, especially phenolics. Thus, the objectives of this study were the chemical analysis and evaluation of the antioxidant and antimicrobial activities of the dry extract and fractions of the fodder turnip leaves (R. sativus var. oleiferus Metzg.). Samples were analyzed by mass spectrometry and the antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the reducing power method. Antimicrobial activity was determined by the agar diffusion and microdilution methods. The total phenols were concentrated in the butanol fraction (121.27 mg GAE/g) and the flavonoids were concentrated in the ethyl acetate fraction (98.02 mg EQ/g). The ethyl acetate fraction showed the best antioxidants results, with 83.45% of free radical scavenging and 11.34% of ferric ions reduction. The analysis of antimicrobial activity showed that the dry extract had the highest average zone of inhibition against Bacillus subtilis (18.67 mm). Smaller values of the minimum inhibitory concentration for Micrococcus luteus were, and the ethyl acetate fraction showed a lower minimum inhibitory concentration (0.1 mg/ml) for that microorganism. There was a strong correlation between the antioxidant activity and the content of phenols and flavonoids. The results showed the potential antioxidant and antimicrobial activities of this extract with the ethyl acetate fraction being most promising for further studies.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Nhan Trong Le ◽  
Duc Viet Ho ◽  
Tuan Quoc Doan ◽  
Anh Tuan Le ◽  
Ain Raal ◽  
...  

The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene (15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Oliveira Silva ◽  
Elidiane Fonseca Santana ◽  
Antonio Marcos Saraiva ◽  
Felipe Neves Coutinho ◽  
Ricardo Henrique Acre Castro ◽  
...  

The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts wasStaphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the threeCandidastrains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities.


2008 ◽  
Vol 25 (No. 2) ◽  
pp. 81-89 ◽  
Author(s):  
A. Adiguzel ◽  
H. Ozer ◽  
H. Kilic ◽  
B. Cetin

The present work reports the <i>in vitro</i> antimicrobial activities of the essential oil and methanol extract from <i>Satureja hortensis</i> as well as the content of its essential oil. The chemical composition of hydrodistilled essential oil of Satureja hortensis was analysed by means of GC-MS. Thirty constituents were identified. The main constituents of the oil were thymol (40.54%), &gamma;-terpinene (18.56%), carvacrol (13.98%), and <i>p</i>-cymene (8.97). The essential oil of <i>Satureja hortensis</i> exhibited the activity against 25 bacteria, 8 fungi, and a yeast, <i>C. albicans</i>; exerting the Minimum Inhibitory Concentration values (MIC) ranging from 15.62 to 250 &micro;l/ml. Similarly, methanol extract of the plant also showed antimicrobial activity.


2020 ◽  
Vol 8 (4) ◽  
pp. 176
Author(s):  
Carla Indianara Bonetti ◽  
Mariana Dalmagro ◽  
Juliana Cristhina Friedrich ◽  
Douglas Rossi Jesus ◽  
Mariana Moraes Pinc ◽  
...  

Echinodorus grandiflorus has pharmacological properties due to its secondary metabolism, such as anti-inflammatory, antioxidant, diuretic, analgesic, anti-rheumatic, antihypertensive, and cardioprotective effects. The aim of this study was to determine the phytochemical profile and evaluate the antimicrobial activity of crude extract of E. grandiflorus form its leaves. In the analysis of the phytochemical profile, qualitative tests were performed to identify tannins, alkaloids, flavonoids, anthraquinones, steroids, triterpenes, saponins, polysaccharides, and coumarins. Antimicrobial tests were performed using the disk diffusion method and minimum inhibitory concentration (MIC) in 96-well microplates, using hydroalcoholic crude extract obtained by maceration in the proportions 1:5 and 1:10. The higher content of crude extract was observed by maceration 1:5 (3.26%). In phytochemical tests, the presence of tannins, alkaloids, flavonoids, and saponins was detected. The microbial strains evaluated were Staphylococcus aureus, S. epidermidis, Lactobacillus casei, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The antimicrobial activity of crude extract has not apparent against the tested organisms. It is concluded that the crude extract present several phytochemical, however did not show antimicrobial activity, and furthermore studies should be carried out researching isolated chemical compounds and the antimicrobial activity leaves crude extract of Echinodorus grandiflorus plant.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2017 ◽  
Vol 65 ◽  
pp. 10-15 ◽  
Author(s):  
Hamid Tebyanian ◽  
Afsaneh Bakhtiari ◽  
Ali Karami ◽  
Ashraf Kariminik

Probiotics have antibacterial effects against pathogenic bacteria in the gut while maintaining the balance of intestinal flora such as Lactobacillus. This study aimed to evaluate the antimicrobial activity of four Lactobacillus species against intestinal pathogenic. Four different species of Lactobacillus (Lactobacillus bulgaricus (PTCC 1332), Lactobacillus casei (PTCC 1608), Lactobacillus plantarum (PTCC 1058) and Lactobacillus Fermentum (PTCC 1638)) were experimented to investigate the inhibitory activity against 4 bacterial enteric pathogens (Escherichia coli, Staphylococcus aureus, Shigella dysenteriae and Salmonella paratyphi A) which were separately inoculated in MRS medium (de Man, Rogosa and Sharpe medium) for 48 hours at 37 °C and pH 7. Our results showed that enteropathogens growth was stopped in the presence of all Lactobacillus and inhibition zone was between 12 and 32 millimeter. It can be concluded that these four Lactobacillus strains had potential antimicrobial compounds against human enteric pathogens and should be further studied for their human health benefits.


2011 ◽  
Vol 6 (7) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Márcia G. Martini ◽  
Humberto R. Bizzo ◽  
Davyson de L. Moreira ◽  
Paulo M. Neufeld ◽  
Simone N. Miranda ◽  
...  

Ocimum selloi, a traditional medicinal plant from Brazil, is sold in open-air markets at Rio de Janeiro State. Hesperozygis myrtoides is a very aromatic small bush found in the State of Minas Gerais, Brazil, growing at an altitude of 1800m. The chemical composition of both essential oils was analyzed as well as their antimicrobial activity against fungi and bacteria. For all specimens of Ocimum selloi obtained at open-air markets, methylchavicol was major compound found (93.6% to 97.6%) in their essential oils. The major compounds identified in the oil of H. myrtoides were pulegone (44.4%), isomenthone (32.7%), and limonene (3.5%). Both oils displayed antimicrobial activity against all tested microorganisms but Candida albicans was the most susceptible one. Combinations of the two oils in different proportions were tested to verify their antimicrobial effect against C. albicans, which, however, was not modified in any of the concentrations tested. The minimum inhibitory concentration (MIC) was determined to confirm the antimicrobial activity against C. albicans as well as other clinical isolates ( C. glabrata, C. krusei, C. parapsilosis and C. tropicalis).


2012 ◽  
Vol 65 (4) ◽  
pp. 343 ◽  
Author(s):  
Mei Zhang ◽  
Dong-Mei Xian ◽  
Hai-Hua Li ◽  
Ji-Cai Zhang ◽  
Zhong-Lu You

A series of new halo-substituted aroylhydrazones have been prepared and structurally characterized by elemental analysis, 1H NMR, 13C NMR, and IR spectra, and single crystal X-ray diffraction. The compounds were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. Among the tested compounds, N′-(2-chloro-5-nitrobenzylidene)-2-fluorobenzohydrazide showed the most effective antimicrobial activity with minimum inhibitory concentration values of 0.82, 2.5, 1.7, 15.2, and 37.5 μg mL–1 against B. subtilis, S. aureus, E. coli, P. fluorescence, and C. albicans, respectively. The biological assay indicated that the presence of the electron-withdrawing groups in the aroylhydrazones improved their antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document