scholarly journals Stage- and Rearing-Dependent Metabolomics Profiling of Ophiocordyceps sinensis and Its Pipeline Products

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 666
Author(s):  
Rui Tang ◽  
Xue-Hong Qiu ◽  
Li Cao ◽  
Hai-Lin Long ◽  
Ri-Chou Han

Cordyceps, a parasitic complex of the fungus Ophiocordyceps sinensis (Berk.) (Hypocreales: Ophiocordycipitaceae) and the ghost moth Thitarodes (Lepidoptera: Hepialidae), is a historical ethnopharmacological commodity in China. Recently, artificial cultivation of Chinese cordyceps has been established to supplement the dwindling natural resources. However, much is unknown between the natural and cultivated products in terms of nutritional aspect, which may provide essential information for quality evaluation. The current study aims to determine the metabolic profiles of 17 treatments from 3 sample groups including O. sinensis fungus, Thitarodes insect and cordyceps complex, using Gas Chromatography - Quadrupole Time-of-Flight Mass Spectrometry. A total of 98 metabolites were detected, with 90 of them varying in concentrations among groups. The tested groups could be separated, except that fungal fruiting body was clustered into the same group as Chinese cordyceps. The main distinguishing factors for the groups studied were the 24 metabolites involved in numerous different metabolic pathways. In conclusion, metabolomics of O. sinensis and its related products were determined mainly by the fruiting bodies other than culture methods. Our results suggest that artificially cultured fruiting bodies and cordyceps may share indistinguishable metabolic functions as the natural ones.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1603 ◽  
Author(s):  
Xuehong Qiu ◽  
Li Cao ◽  
Richou Han

The artificial production of Ophiocordyceps sinensis mycelia and fruiting bodies and the Chinese cordyceps has been established. However, the volatile components from these O. sinensis products are not fully identified. An efficient, convenient, and widely used approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography and quadrupole time-of-flight mass spectrometry (GC×GC-QTOFMS) was developed for the extraction and the analysis of volatile compounds from three categories of 16 products, including O. sinensis fungus, Thitarodes hosts of O. sinensis, and the Chinese cordyceps. A total of 120 volatile components including 36 alkanes, 25 terpenes, 17 aromatic hydrocarbons, 10 ketones, 5 olefines, 5 alcohols, 3 phenols, and 19 other compounds were identified. The contents of these components varied greatly among the products but alkanes, especially 2,5,6-trimethyldecane, 2,3-dimethylundecane and 2,2,4,4-tetramethyloctane, are the dominant compounds in general. Three categories of volatile compounds were confirmed by partial least squares-discriminant analysis (PLS-DA). This study provided an ideal method for characterizing and distinguishing different O. sinensis and insect hosts-based products.


2015 ◽  
Vol 42 (11) ◽  
pp. 2003-2011 ◽  
Author(s):  
Kwi Young Kang ◽  
Soo Hyun Lee ◽  
Seung Min Jung ◽  
Sung-Hwan Park ◽  
Byung-Hwa Jung ◽  
...  

Objective.Synovial fluid (SF) is one of the most important materials that reflect the pathophysiological process of arthritis. A metabolomic and lipidomic study of SF was performed with the aim of identifying tentative diagnostic markers or therapeutic candidates for rheumatoid arthritis (RA).Methods.SF was aspirated from 10 patients with RA and 10 patients with osteoarthritis (OA). RA SF and OA SF were collected and analyzed by ultraperformance liquid chromatography quadruple time-of-flight mass spectrometry. Associations among clinical variables, laboratory results, and metabolic profiles were investigated.Results.The metabolic pathways for carnitine, tryptophan, phenylalanine, arachidonic acid, and glycophospholipid were significantly upregulated in OA SF. The metabolic pathways for taurine, cholesterol ester, and the β-oxidation of pristine acid, linolenic acid, and sphingolipid were activated more in RA SF than in OA SF. In particular, the tryptophan pathway, which comprises kynurenine, indoleacetic acid, indole acetaldehyde, and N′-formylkynurenine, was downregulated. Interestingly, the levels of tryptophan metabolites kynurenine and N′-formylkynurenine, which are involved in immune tolerance, were significantly lower in RA SF compared with OA SF (p < 0.05), but the opposite pattern was observed for erythrocyte sedimentation rate (p < 0.01) and the levels of C-reactive protein (CRP; p < 0.01), rheumatoid factor (p < 0.01), and anticyclic citrullinated peptide antibody (p < 0.05). Kynurenine concentration correlated inversely with CRP concentration in RA SF but not in OA SF (r −0.65, p < 0.05).Conclusion.Advances in metabolomic techniques enabled us to delineate distinctive metabolic and lipidomic profiles in RA SF and OA SF. RA SF and OA SF showed distinct metabolic profiles.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chao-qun Zhao ◽  
Long Chen ◽  
Hong Cai ◽  
Wei-li Yao ◽  
Qun Zhou ◽  
...  

Objective. This study aimed to analyze the differential metabolites and their metabolic pathways from the serum of patients with hepatitis B cirrhosis, with two typical patterns of Gan Dan Shi Re (GDSR) and Gan Shen Yin Xu (GSYX) based on the theory of traditional Chinese medicine (TCM). It also investigated the variation in the internal material basis for the two types of patterns and provided an objective basis for classifying TCM patterns using metabolomic techniques. Methods. The serum samples taken from 111 qualified patients (40 GDSR cases, 41 GSYX cases, and 30 Latent Pattern (LP) cases with no obvious pattern characters) and 60 healthy volunteers were tested to identify the differential substances relevant to hepatitis B cirrhosis and the two typical TCM patterns under the gas chromatography–time-of-flight mass spectrometry platform. The relevant metabolic pathways of differential substances were analyzed using multidimensional statistical analysis. Results. After excluding the influence of LP groups, six common substances were found in GDSR and GSYX patterns, which were mainly involved in the metabolic pathways of glycine, serine, threonine, and phenylalanine. Eight specific metabolites involved in the metabolic pathways of linoleic, glycine, threonine, and serine existed in the two patterns. Conclusions. The data points on the metabolic spectrum were found to be well distributed among the differential substances between the two typical TCM patterns of patients with hepatitis B cirrhosis using metabolomic techniques. The differential expression of these substances between GDSR and GSYX patterns provided an important objective basis for the scientific nature of TCM pattern classification at the metabolic level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Ding ◽  
Mingyi Chen ◽  
Ying Liao ◽  
Qiliang Chen ◽  
Xuejuan Lin ◽  
...  

By far, no study has focused on observing the metabolomic profiles in perimenopause-related obesity. This study attempted to identify the metabolic characteristics of subjects with perimenopause obesity (PO). Thirty-nine perimenopausal Chinese women, 21 with PO and 18 without obesity (PN), were recruited in this study. A conventional ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QTOF/MS) followed by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolic profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. A total of 46 differential metabolites, along with seven metabolic pathways relevant to PO were identified, which belonged to lipid, amino acids, carbohydrates, and organic acids. As for amino acids, we found a significant increase in l-arginine and d-ornithine in the positive ion (POS) mode and l-leucine, l-valine, l-tyrosine, and N-acetyl-l-tyrosine in the negative ion (NEG) mode and a significant decrease in l-proline in the POS mode of the PO group. We also found phosphatidylcholine (PC) (16:0/16:0), palmitic acid, and myristic acid, which are associated with the significant upregulation of lipid metabolism. Moreover, the serum indole lactic acid and indoleacetic acid were upregulated in the NEG mode. With respect to the metabolic pathways, the d-arginine and d-ornithine metabolisms and the arginine and proline metabolism pathways in POS mode were the most dominant PO-related pathways. The changes of metabolisms of lipid, amino acids, and indoleacetic acid provided a pathophysiological scenario for Chinese women with PO. We believe that the findings of this study are helpful for clinicians to take measures to prevent the women with PO from developing severe incurable obesity-related complications, such as cardiovascular disease and stroke.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 520 ◽  
Author(s):  
Xuejie Li ◽  
Lijie Pan ◽  
Bin Wang ◽  
Li Pan

Histone acetylation is an important modification for the regulation of chromatin accessibility and is controlled by two kinds of histone-modifying enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). In filamentous fungi, there is increasing evidence that HATs and HDACs are critical factors related to mycelial growth, stress response, pathogenicity and production of secondary metabolites (SMs). In this study, seven A. niger histone deacetylase-deficient strains were constructed to investigate their effects on the strain growth phenotype as well as the transcriptomic and metabolic profiles of secondary metabolic pathways. Phenotypic analysis showed that deletion of hosA in A. niger FGSC A1279 leads to a significant reduction in growth, pigment production, sporulation and stress resistance, and deletion of hdaA leads to an increase in pigment production in liquid CD medium. According to the metabolomic analysis, the production of the well-known secondary metabolite fumonisin was reduced in both the hosA and hdaA mutants, and the production of kojic acid was reduced in the hdaA mutant and slightly increased in the hosA mutant. Results suggested that the histone deacetylases HosA and HdaA play a role in development and SM biosynthesis in A. niger FGSC A1279. Histone deacetylases offer new strategies for regulation of SM synthesis.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yanyan Xu ◽  
Yiwei Zhao ◽  
Jiabin Xie ◽  
Xue Sheng ◽  
Yubo Li ◽  
...  

Psoraleae Fructus is the dry and mature fruit of leguminous plant Psoralea corylifolia L., with the activity of warming kidney and enhancing yang, warming spleen, and other effects. However, large doses can cause liver and kidney toxicity. Therefore, it is necessary to evaluate the toxicity of Psoraleae Fructus systematically. Although traditional biochemical indicators and pathological tests have been used to evaluate the safety of drug, these methods lack sensitivity and specificity, so a fast and sensitive analytical method is urgently needed. In this study, an ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method was used to analyze the metabolic profiles of rat plasma. The changes of metabolites in plasma samples were detected by partial least squares-discriminant analysis (PLS-DA). Compared with the control group, after 7 days of administration, the pathological sections showed liver and kidney toxicity, and the metabolic trend was changed. Finally, 13 potential biomarkers related to the toxicity of Psoraleae Fructus were screened. The metabolic pathways involved were glycerol phospholipids metabolism, amino acid metabolism, energy metabolism, and so forth. The discovery of these biomarkers laid a foundation for better explaining the hepatotoxicity and nephrotoxicity of Psoraleae Fructus and provided a guarantee for its safety evaluation.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Zhang ◽  
Bo Li ◽  
Xiao-Hui Men ◽  
Zhe-Wen Xu ◽  
Hui Wu ◽  
...  

Abstract Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serum of geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach. Sixty Landes geese of the same age were randomly divided into the following three groups with 20 replicates in each group: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). At the end of the experiment, 10 geese of similar weight from each group were selected for slaughter and sampling. The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlated metabolic pathways. Relative to overfeeding for 7 days, a large number of endogenous molecules in serum of geese overfed for 25 days were altered. Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in amino acids, carbohydrate and lipid metabolism. The present study exhibited the efficient capability of Landes geese to produce fatty liver, identified potential biomarkers and disturbed metabolic pathways in liver steatosis. These findings might reveal the underlying mechanisms of fatty liver formation and provide some theoretical basis for the diagnosis and treatment of liver diseases.


Sign in / Sign up

Export Citation Format

Share Document