scholarly journals A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment

2020 ◽  
Vol 9 (11) ◽  
pp. 3529
Author(s):  
Mihnea P. Dragomir ◽  
Vlad Moisoiu ◽  
Roxana Manaila ◽  
Barbara Pardini ◽  
Erik Knutsen ◽  
...  

One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.

Author(s):  
Jin G. Jung ◽  
Anne Le

AbstractThe tumor microenvironment (TME) is a complex biological structure surrounding tumor cells and includes blood vessels, immune cells, fibroblasts, adipocytes, and extracellular matrix (ECM) [1, 2]. These heterogeneous surrounding structures provide nutrients, metabolites, and signaling molecules to provide a cancer-friendly environment. The metabolic interplay between immune cells and cancer cells in the TME is a key feature not only for understanding tumor biology but also for discovering cancer cells’ vulnerability. As cancer immunotherapy to treat cancer patients and the use of metabolomics technologies become more and more common [3], the importance of the interplay between cancer cells and immune cells in the TME is emerging with respect to not only cell-to-cell interactions but also metabolic pathways. This interaction between immune cells and cancer cells is a complex and dynamic process in which immune cells act as a determinant factor of cancer cells’ fate and vice versa. In this chapter, we provide an overview of the metabolic interplay between immune cells and cancer cells and discuss the therapeutic opportunities as a result of this interplay in order to define targets for cancer treatment. It is important to understand and identify therapeutic targets that interrupt this cancerpromoting relationship between cancer cells and the surrounding immune cells, allowing for maximum efficacy of immune checkpoint inhibitors as well as other genetic and cellular therapies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaolin Xu ◽  
Lijie He ◽  
Qiang Fu ◽  
Junzhe Hu

Immune checkpoint inhibitors (ICIs), Ipilimumab, Nivolumab, Pembrolizumab and Atezolizumab, have been applied in anti-tumor therapy and demonstrated exciting performance compared to conventional treatments. However, the unsatisfactory response rates, high recurrence and adaptive resistance limit their benefits. Metabolic reprogramming appears to be one of the crucial barriers to immunotherapy. The deprivation of required nutrients and altered metabolites not only promote tumor progression but also confer dysfunction on immune cells in the tumor microenvironment (TME). Glycolysis plays a central role in metabolic reprogramming and immunoregulation in the TME, and many therapies targeting glycolysis have been developed, and their combinations with ICIs are in preclinical and clinical trials. Additional attention has been paid to the role of amino acids, lipids, nucleotides and mitochondrial biogenesis in metabolic reprogramming and clinical anti-tumor therapy. This review attempts to describe reprogramming metabolisms within tumor cells and immune cells, from the aspects of glycolysis, amino acid metabolism, lipid metabolism, nucleotide metabolism and mitochondrial biogenesis and their impact on immunity in the TME, as well as the significance of targeting metabolism in anti-tumor therapy, especially in combination with ICIs. In particular, we highlight the expression mechanism of programmed cell death (ligand) 1 [PD-(L)1] in tumor cells and immune cells under reprogramming metabolism, and discuss in detail the potential of targeting key metabolic pathways to break resistance and improve the efficacy of ICIs based on results from current preclinical and clinical trials. Besides, we draw out biomarkers of potential predictive value in ICIs treatment from a metabolic perspective.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Yu Jun Wo ◽  
Adelia Shin Ping Gan ◽  
Xinru Lim ◽  
Isabel Shu Ying Tay ◽  
Sherlly Lim ◽  
...  

The tumor microenvironment (TME) consists of extracellular matrix proteins, immune cells, vascular cells, lymphatics and fibroblasts. Under normal physiological conditions, tissue homeostasis protects against tumor development. However, under pathological conditions, interplay between the tumor and its microenvironment can promote tumor initiation, growth and metastasis. Immune cells within the TME have an important role in the formation, growth and metastasis of tumors, and in the responsiveness of these tumors to immunotherapy. Recent breakthroughs in the field of cancer immunotherapy have further highlighted the potential of targeting TME elements, including these immune cells, to improve the efficacy of cancer prognostics and immunotherapy. CD38 and CD157 are glycoproteins that contribute to the tumorigenic properties of the TME. For example, in the hypoxic TME, the enzymatic functions of CD38 result in an immunosuppressive environment. This leads to increased immune resistance in tumor cells and allows faster growth and proliferation rates. CD157 may also aid the production of an immunosuppressive TME, and confers increased malignancy to tumor cells through the promotion of tumor invasion and metastasis. An improved understanding of CD38 and CD157 in the TME, and how these glycoproteins affect cancer progression, will be useful to develop both cancer prognosis and treatment methods. This review aims to discuss the roles of CD38 and CD157 in the TME and cancer immunotherapy of a range of solid tumor types.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A528-A528
Author(s):  
Lin Ma ◽  
Jian-Hua Mao ◽  
Mary Helen Barcellos-Hoff ◽  
Jade Moore

BackgroundCheckpoint inhibitors can induce robust and durable responses in a subset of patients. Extending this benefit to more patients could be facilitated by better understanding of how interacts with immune cells with the tumor microenvironment, which is a critical barrier to control both local and systemic disease. The composition and pattern of the immune infiltrate associates with the likelihood of response to immunotherapy. Inflamed tumors that exhibit a brisk immune cell infiltrate are responsive, while those in which immune cells are completely or partially excluded are not. Transforming growth factor β (TGFβ) is immunosuppressive and associated with the immune excluded phenotype.MethodsUsing an immune competent mammary tumor derived transplant (mTDT) model recently developed in our lab, exhibits inflamed, excluded or deserts immune infiltrate phenotypes based on localization of CD8 lymphocytes. Using whole transcriptome deep sequencing, cytof, and PET-CT imaging, we evaluated the tumor, microenvironment, and immune pathway activation among immune infiltrate phenotypes.ResultsThree distinct inflamed tumors phenotypes were identified: ‘classically’ inflamed characterized by pathway evidence of increased CD8+ T cells and decreased PD-L1 expression, inflamed tumors with pathways indicative of neovascularization and STAT3 signaling and reduced T cell mobilization, and an inflamed tumor with increased immunosuppressive myeloid phenotypes. Excluded tumors were characterized by TGFβ gene expression and pro-inflammatory cytokine signaling (e.g. TNFα, IL1β), associated with decreased leukocytes homing and increased immune cell death of cells. We visualized and quantified TGFβ activity using PET-CT imaging of 89Zr-fresolimumab, a TGFβ neutralizing antibody. TGFβ activity was significantly increased in excluded tumors compared to inflamed or desert tumors, which was supported by quantitative pathology (Perkin Elmer) of its canonical signaling target, phosphorylated SMAD2 (pSMAD2). pSMAD2 was positively correlated with PD-L1 expression in the stroma of excluded tumors. In contrast, in inflamed tumors, TGFβ activity positively correlated with increased F4/80 positive macrophages and negatively correlated with expression of PD-L1. CyTOF analysis of tumor and spleen immune phenotypes revealed increased trafficking of myeloid cells in mice bearing inflamed tumors compared to excluded and deserts.ConclusionsThe immunocompetent mTDT provides a model that bridges the gap between the immune landscape and tumor microenvironment. Integration of these high-dimensional data with further studies of response to immunotherapies will help to identify tumor features that favor response to treatment or the means to convert those that are unresponsive.


2021 ◽  
Vol 22 (4) ◽  
pp. 2142
Author(s):  
Rola El Sayed ◽  
Yolla Haibe ◽  
Ghid Amhaz ◽  
Youssef Bouferraa ◽  
Ali Shamseddine

Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain “hot” or “immune-sensitive” tumors become “cold” or “immune-resistant”, with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.


2019 ◽  
Vol 20 (18) ◽  
pp. 4588 ◽  
Author(s):  
Eman A. Taha ◽  
Kisho Ono ◽  
Takanori Eguchi

Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Saurabh Satija ◽  
Harpreet Kaur ◽  
Murtaza M. Tambuwala ◽  
Prabal Sharma ◽  
Manish Vyas ◽  
...  

Hypoxia is an integral part of tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mchanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.


2018 ◽  
Vol 11 (552) ◽  
pp. eaau1165 ◽  
Author(s):  
Ameer L. Elaimy ◽  
Arthur M. Mercurio

Vascular endothelial growth factor (VEGF) stimulates endothelial cells to promote both developmental and pathological angiogenesis. VEGF also directly affects tumor cells and is associated with the initiation, progression, and recurrence of tumors, as well as the emergence and maintenance of cancer stem cells (CSCs). Studies have uncovered the importance of the transcriptional regulators YAP and TAZ in mediating VEGF signaling. For example, VEGF stimulates the GTPase activity of Rho family members and thereby alters cytoskeletal dynamics, which contributes to the activation of YAP and TAZ. In turn, YAP- and TAZ-mediated changes in gene expression sustain Rho family member activity and cytoskeletal effects to promote both vascular growth and remodeling in endothelial cells and the acquisition of stem-like traits in tumor cells. In this Review, we discuss how these findings further explain the pathophysiological roles of VEGF and YAP/TAZ, identify their connections to other receptor-mediated pathways, and reveal ways of therapeutically targeting their convergent signals in patients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shahid Hussain ◽  
Bo Peng ◽  
Mathew Cherian ◽  
Jonathan W. Song ◽  
Dinesh K. Ahirwar ◽  
...  

The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a “pre-metastatic niche” like a “soil” in distant organs whereby circulating tumor cells “seed’ and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.


Sign in / Sign up

Export Citation Format

Share Document