scholarly journals Rutin-Loaded Nanovesicles for Improved Stability and Enhanced Topical Efficacy of Natural Compound

2021 ◽  
Vol 12 (4) ◽  
pp. 74
Author(s):  
Maria Chiara Cristiano ◽  
Antonella Barone ◽  
Antonia Mancuso ◽  
Daniele Torella ◽  
Donatella Paolino

Rutin is a natural compound with several pharmacological effects. Among these, antioxidant activity is one of the best known. Despite its numerous benefits, its topical application is severely limited by its physicochemical properties. For this reason, the use of suitable systems could be necessary to improve its delivery through skin, thus enhancing its pharmacological effects. In this regard, the aim of this work is to optimize the ethosomal dispersion modifying both lipid and ethanol concentrations and encapsulating different amounts of rutin. Characterization studies performed on the realized systems highlighted their great stability properties. Studies of encapsulation efficiency and loading degree allowed us to identify a better formulation (EE% 67.5 ± 5.2%, DL% 27 ± 1.7%), which was used for further analyses. The data recorded from in vitro studies showed that the encapsulation into these nanosystems allowed us to overcome the photosensitivity limitation of rutin. Indeed, a markable photostability of the loaded formulation was recorded, compared with that reported from the free rutin solution. The efficacy of the nanosystems was finally evaluated both in vitro on keratinocyte cells and in vivo on human healthy volunteers. The results confirmed the potentiality of rutin-loaded nanosystems for skin disease, mainly related to their anti-inflammatory and antioxidant effects.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Weerakoon Achchige Selvi Saroja Weerakoon ◽  
Pathirage Kamal Perera ◽  
Dulani Gunasekera ◽  
Thusharie Sugandhika Suresh

Sudarshanapowder (SP) is one of the most effective Ayurveda powder preparations for paediatric febrile conditions. The objective of the present study was to evaluate thein vitroandin vivoantioxidant potentials of SP. Thein vitroantioxidant effects were evaluated using ABTS radical cation decolourization assay where the TROLOX equivalent antioxidant capacity (TEAC) was determined. Thein vivoantioxidant activity of SP was determined in Wistar rats using the Lipid Peroxidation (LPO) assay in serum. Thein vitroassay was referred to as the TROLOX equivalent antioxidant capacity (TEAC) assay. For thein vivoassay, animals were dosed for 21 consecutive days and blood was drawn to evaluate the MDA level. Thein vitroantioxidant activity of 0.5 μg of SP was equivalent to 14.45 μg of standard TROLOX. The percentage inhibition against the radical formation was50.93±0.53%. The SP showed a statistically significant (p<0.01) decrease in the serum level of thiobarbituric acid-reactive substance in the test rats when compared with the control group. These findings suggest that the SP possesses potent antioxidant activity which may be responsible for some of its reported bioactivities.


2017 ◽  
Vol 67 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Vaida Juškaitė ◽  
Kristina Ramanauskienė ◽  
Vitalis Briedis

Abstract Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.


Author(s):  
Dontha Sunitha

<p>ABSTRACT<br />To provide an outlook of the various available methods of antioxidant activity. Various available in vitro and in vivo methods are listed and the<br />procedure to perform the method, its mechanism is also explained in brief. 1,1-diphenyl-2-picrylhydrazyl method was found to be used mostly for the<br />in vitro antioxidant activity evaluation purpose while lipid peroxidation was found as mostly used in vivo antioxidant assay. An ethanol was with the<br />highest frequency as a solvent for extraction purpose. Summarized information on the various methods available provides with reliable information<br />to confirm the benefits of antioxidant effects.<br />Keywords: Antioxidant activity, Reactive oxygen species, Free radical, 1,1-diphenyl-2-picrylhydrazyl, Flavonoid.</p>


2012 ◽  
Vol 7 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Jelena Živković ◽  
Tatjana Ćebović ◽  
Zoran Maksimović

AbstractThe aim of the present study was to examine the antioxidant activity of three Veronica species (Plantaginaceae). The antioxidant potential of various extracts obtained from aerial flowering parts was evaluated by DPPH-free (1,1-diphenyl-2-picrylhydrazyl-free) radical scavenging activity and ferric-reducing antioxidant power assays. Considerable antioxidant activity was observed in the plant samples (FRAP values ranged from 0.97 to 4.85 mmol Fe2+/g, and DPPH IC50 values from 12.58 to 66.34 µg/ml); however, these levels were lower than the activity of the control compound butylated hydroxytoluene (BHT) (FRAP: 10.58 mmol Fe2+/g; DPPH IC50: 9.57 µg/ml). Also, the in vivo antioxidant effects were evaluated in several hepatic antioxidant systems in rats (activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase, glutathione content and level of thiobarbituric acid reactive substances) after treatment with different Veronica extracts, or in combination with carbon tetrachloride (CCl4). Pretreatment with 100 mg/kg b.w. of Veronica extracts inhibited CCl4-induced liver injury by decreasing TBA-RS level, increasing GSH content, and bringing the activities of CAT and Px to control levels. The present study suggests that the extracts analyzed could protect the liver cells from CCl4-induced liver damage by their antioxidative effect on hepatocytes.


1995 ◽  
Vol 41 (1) ◽  
pp. 32-35 ◽  
Author(s):  
T P Whitehead ◽  
D Robinson ◽  
S Allaway ◽  
J Syms ◽  
A Hale

Abstract Aerobic metabolism in biological systems produces reactive oxygen species, and defense against such prooxidants requires antioxidant activity, e.g., predominantly vitamins C and E in serum. Recently, flavonoids (polyphenols occurring widely in plants) have been investigated in vitro for their antioxidant activity; whether they are absorbed after ingestion is not clear. Using a chemiluminescent assay of serum antioxidant capacity (SAOC), we have studied the effects in normal individuals of ingesting red wine, white wine, and high doses of vitamin C. In nine subjects who ingested 300 mL of red wine, the mean SAOC was increased by 18% after 1 h and by 11% at 2 h. The same amount of white wine produced 4% and 7% increases, respectively. The ingestion of 1000 mg (5.7 mmol) of ascorbic acid by four subjects increased their mean SAOC by 22% at 1 h and by 29% at 2 h. An in vitro comparison of red wine, white wine, and various fruit juices showed the high antioxidant capacity of red wine in addition to its ability to increase the antioxidant capacity of serum in vivo. The antioxidant effects of various flavonoids and other polyphenols were also studied.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Sign in / Sign up

Export Citation Format

Share Document