scholarly journals Compatibility of Beauveria bassiana and a Plant Secondary Metabolite: A Novel Modeling Approach to Invade Host Defense for Effective Control of Oligonychus afrasiaticus (McGregor) on Date Palms

2021 ◽  
Vol 7 (5) ◽  
pp. 334
Author(s):  
Abid Hussain

Oligonychus afrasiaticus (McGregor) is an important pest causing substantial economic losses to date palm fruits (dates). The application of mycopathogens with plant secondary metabolites, which may proceed synergistically is thus essential to augment sustainable management strategy for O. afrasiaticus. In this regard, extensive laboratory experimentation involving compatibility, synergism, and host defense was performed to develop stable pest management option. The toxin-pathogen compatibility assay results revealed compatible interaction (biological index = 79–95) of B. bassiana ARSEF 8465 against each tested concentration of commercially available (+)-α-Pinene that provide the opportunity to further explore the time and concentration dependent mortality and defense related enzymatic regulation analysis. The time-mortality response assays that mainly comprised of various proportions of B. bassiana ARSEF 8465 and (+)-α-Pinene revealed that the sole application of B. bassiana ARSEF 8465 (LC50 = 19.16 mg/mL), and (+)-α-Pinene (3.41 mg/mL) found to be least lethal compared with joint applications (LC50 ranged from 1.32–7.06 mg/mL). The treatments complied under Scheme IV (80% (+)-α-Pinene: 20% B. bassiana ARSEF 8465 Conidia) led to strong synergistic interaction (joint toxicity = 755). In addition, synergistic interactions greatly induced enzymatic activities of the studied antioxidants (CAT and SOD), and defense-related enzymes (GST and AchE). We concluded that join application of B. bassiana ARSEF 8465 and (+)-α-Pinene is a promising option for controlling Oligonychus afrasiaticus populations.

2021 ◽  
Author(s):  
Zhenghui Liu ◽  
Yitong Zhao ◽  
Frederick Leo Sossah ◽  
Benjamin Azu Okorley ◽  
Daniel G. Amoako ◽  
...  

Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen’s ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huizhong Li ◽  
Yichang Cai ◽  
Quanqing Deng ◽  
Han Bao ◽  
Jianwen Chen ◽  
...  

Sugarcane is an important sugar crop. Sugarcane smut, caused by Sporisorium scitamineum, is a worldwide sugarcane disease with serious economic losses and lack of effective control measures. Revealing the molecular pathogenesis of S. scitamineum is very helpful to the development of effective prevention and control technology. Deubiquitinase removes ubiquitin molecules from their binding substrates and participates in a variety of physiological activities in eukaryotes. Based on the transcriptome sequencing data of two isolates (Ss16 and Ss47) of S. scitamineum with different pathogenicities, SsCI33130, a gene encoding an OTU1-deubiquitin enzyme, was identified. The positive knockout mutants and complementary mutants of the SsCI33130 gene were successfully obtained through polyethylene glycol-mediated protoplast transformation technology. In order to study the possible function of this gene in pathogenicity, phenotypic comparison of the growth, morphology, abiotic stress, sexual mating, pathogenicity, and gene expression levels of the knockout mutants, complementary mutants, and their wild type strains were conducted. The results demonstrated that the gene had almost no effect on abiotic stress, cell wall integrity, growth, and morphology, but was related to the sexual mating and pathogenicity of S. scitamineum. The sexual mating ability and pathogenicity between the knockout mutants or between the knockout mutant and wild type were more significantly reduced than between the wild types, the complementary mutants, or the wild types and complementary mutants. The sexual mating between the knockout mutants or between the knockout mutant and wild type could be restored by the exogenous addition of small-molecule signaling substances such as 5 mM cyclic adenosine monophosphate (cAMP) or 0.02 mM tryptophol. In addition, during sexual mating, the expression levels of tryptophol and cAMP synthesis-related genes in the knockout mutant combinations were significantly lower than those in the wild type combinations, while the expression levels in the complementary mutant combinations were restored to the level of the wild type. It is speculated that the SsCI33130 gene may be involved in the development of sexual mating and pathogenicity in S. scitamineum by regulating the synthesis of the small-molecule signaling substances (cAMP or tryptophol) required during the sexual mating of S. scitamineum, thereby providing a molecular basis for the study of the pathogenic mechanisms of S. scitamineum.


2018 ◽  
Vol 108 (10) ◽  
pp. 1206-1211 ◽  
Author(s):  
Takeo Shimizu ◽  
Satoko Kanematsu ◽  
Hajime Yaegashi

Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soilborne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.


1967 ◽  
Vol 7 (28) ◽  
pp. 472
Author(s):  
PR Birks

The field cricket, Teleogryllus commodus (Walker) is an important pest of black cracking soils of south-eastern mainland Australia and of New Zealand. Insecticidal control was unsatisfactory until dieldrin was introduced. Residue problems associated with the use of dieldrin on pastures led to a revival of investigations into alternative treatments. The low volume concentrate application of technical malathion by aircraft gave rapid and effective control when applied late in the season. As little as 6.5 fl oz of 96 per cent malathion, estimated to cost no more than $1.20 an acre, including application costs, reduced cricket populations by 94-95 per cent two to six days after spraying, providing quick, convenient, and economical control and avoiding undesirable insecticide residues. Further trials will be necessary to determine suitable applications earlier in the season.


Weed Science ◽  
1979 ◽  
Vol 27 (4) ◽  
pp. 396-400 ◽  
Author(s):  
Richard E. Bailey ◽  
James A. Simmons

Weed competition in the commercial production of woody ornamentals results in substantial economic losses annually due to increased labor costs and reductions in plant growth and quality. Container and field experiments were established in 1975 and continued through 1976 to evaluate oxadiazon [2-tert-butyl-4-(2,4-dichloro-5-isopropoxyphenyl)-δ2-1,3,4-oxadiazolin-5-one] as a weed control agent and to determine its effect on ornamentals at selected test sites throughout the United States. Test programs were conducted with container and field grown ornamentals at 10 locations during 1975 and subsequently increased to 12 locations in 1976. Rates evaluated included 3.4, 4.5, 5.6 and 11.2 kg/ha. Highly effective control of 17 weeds was obtained for 3-month periods at rates as low as 4.5 kg/ha. Oxadiazon gave commercially acceptable control of common groundsel (Senecio vulgaris L.), a very serious weed problem in containers. Control of common chickweed [Stellaria media (L.) Cyrillo], however, was poor at all rates tested. Ornamental tolerance to oxadiazon was generally excellent. Of the 50 ornamental species evaluated in 1975, only two displayed phytotoxic symptoms; scarlet firethorn (Pyracantha coccinea Roem.) and Chinese privet (Ligustrum sinense Lour.) at 5.6 and 11.2 kg/ha following three successive applications at 3-month intervals. In 1976 trials on 63 species, phytotoxic symptoms could not be reproduced on the above species; chemical intolerance was limited to growth inhibition of aloe yucca (Yucca aloifolia L.) at 5.6 and 11.2 kg/ha.


2020 ◽  
Vol 125 (7) ◽  
pp. 1065-1075
Author(s):  
Tao Li ◽  
Päivi Tiiva ◽  
Åsmund Rinnan ◽  
Riitta Julkunen-Tiitto ◽  
Anders Michelsen ◽  
...  

Abstract Background and Aims Plant secondary metabolites play critical roles in plant stress tolerance and adaptation, and are known to be influenced by the environment and climate changes, yet the impacts and interactions of multiple climate change components are poorly understood, particularly under natural conditions. Methods Accumulation of phenolics and emissions of volatile organic compounds (VOCs) were assessed on heather, Calluna vulgaris, an abundant evergreen dwarf shrub in European heathlands, after 6 years of exposure to elevated CO2, summer drought and nighttime warming. Key Results Drought alone had the strongest effects on phenolic concentrations and compositions, with moderate effects of elevated CO2 and temperature. Elevated CO2 exerted the greatest impact on VOC emissions, mainly by increasing monoterpene emissions. The response magnitudes varied among plant tissue types and chemical constituents, and across time. With respect to interactive effects of the studied climate change components, the interaction between drought and elevated CO2 was most apparent. Drought mainly reduced phenolic accumulation and VOC emissions, while elevated CO2 mitigated such effects. Conclusions In natural ecosystems, co-occurring climate factors can exert complex impacts on plant secondary metabolite profiles, which may in turn alter ecosystem processes.


2020 ◽  
Vol 86 (11) ◽  
Author(s):  
Xuefa Chong ◽  
Chenyu Wang ◽  
Yao Wang ◽  
Yixiao Wang ◽  
Liyuan Zhang ◽  
...  

ABSTRACT Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized Sey1/atlastin homologue FgSey1 in F. graminearum. Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis, and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. The GTPase, helix bundle (HB), transmembrane segment (TM), and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TM domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87A lacked GTPase activity and failed to rescue the defects of the ΔFgsey1 mutant. Collectively, our data suggest that the dynamin-like GTPase protein FgSey1 affects the generation of LDs and toxisomes and is required for DON biosynthesis and pathogenesis in F. graminearum. IMPORTANCE Fusarium graminearum is a major plant pathogen that causes Fusarium head blight (FHB) of wheats worldwide. In addition to reducing the plant yield, F. graminearum infection of wheats also results in the production of deoxynivalenol (DON) mycotoxins, which are harmful to humans and animals and therefore cause great economic losses through pollution of food products and animal feed. At present, effective strategies for controlling FHB are not available. Therefore, understanding the regulation mechanisms of fungal development, pathogenesis, and DON biosynthesis is important for the development of effective control strategies of this disease. In this study, we demonstrated that a dynamin-like GTPase protein Sey1/atlastin homologue, FgSey1, is required for vegetative growth, DON production, and pathogenicity in F. graminearum. Our results provide novel information on critical roles of FgSey1 in fungal pathogenicity; therefore, FgSey1 could be a potential target for effective control of the disease caused by F. graminearum.


Author(s):  
Vasiliki Boulaki ◽  
Dimitrios Vlachakis ◽  
Smaragda Sotiraki ◽  
Sophia Kossida

Piglet isosporosis caused by Isospora suis represents a considerable problem worldwide with great economic losses and veterinary importance in pig production. So the control of this parasite is a great need. However, little is known about porcine coccidiosis concerning dynamics, pathophysiology and immunology of this disease, as well as host-parasite interactions. In addition, only few studies deal with experimental modelling of this illness with parameters such as the excretion patterns and the age-related susceptibility. However, besides natural I. suis infections occurring in pig farms, there are some experimental infections described that allow investigating accurately the course of infection. Experimental infections could contribute to a more effective control of these infections. In addition, managerial practices of farrowing facilities and piglet manipulations can contribute to this purpose. So, the description of hygiene measures, the appropriate management of farrowing facilities and piglet manipulations, as well as appropriate farm-specific environment, comprising appropriate design and materials of the farrowing pen and enough room, could diminish the occurrence and transmission of this parasite. However, unfortunately there are only very few reports documenting all this subjects that are so important for the effective control of this disease.


2017 ◽  
Vol 18 (2) ◽  
pp. 91-92
Author(s):  
Jason M. French ◽  
Jacki Beacham ◽  
Amanda Garcia ◽  
Natalie P. Goldberg ◽  
Stephen H. Thomas ◽  
...  

Taken together, symptoms present, microscopic characterization, and ITS-1 sequence data indicate New Mexico garlic samples infested with Ditylenchus dipsaci, making this the first known report of this pest in the state. This discovery is significant because D. dipsaci can be a persistent pest and has the potential to cause significant economic losses on agronomically important hosts including onion, garlic, and alfalfa. Its longevity in the soil and international trade issues will be concerns for producers. Monitoring of production areas in the region will be performed to determine if this was an isolated and contained introduction or if this important pest has become established in New Mexico.


Sign in / Sign up

Export Citation Format

Share Document