scholarly journals Production and Activity of Cristazarin in the Lichen-Forming Fungus Cladonia metacorallifera

2021 ◽  
Vol 7 (8) ◽  
pp. 601
Author(s):  
Min-Hye Jeong ◽  
Chan-Ho Park ◽  
Jung A Kim ◽  
Eu Ddeum Choi ◽  
Soonok Kim ◽  
...  

Lichens are a natural source of bioactive compounds. Cladonia metacorallifera var. reagens KoLRI002260 is a rare lichen known to produce phenolic compounds, such as rhodocladonic, thamnolic, and didymic acids. However, these metabolites have not been detected in isolated mycobionts. We investigated the effects of six carbon sources on metabolite biosynthesis in the C. metacorallifera mycobiont. Red pigments appeared only in Lilly and Barnett’s media with fructose at 15 °C after 3 weeks of culture and decreased after 6 weeks. We purified these red pigments using preparative-scale high performance liquid chromatography and analyzed them via nuclear magnetic resonance. Results indicated that 1% fructose-induced cristazarin and 6-methylcristazarin production under light conditions. In total, 27 out of 30 putative polyketide synthase genes were differentially expressed after 3 weeks of culture, implying that these genes may be required for cristazarin production in C. metacorallifera. Moreover, the white collar genes Cmwc-1 and Cmwc-2 were highly upregulated at all times under light conditions, indicating a possible correlation between cristazarin production and gene expression. The cancer cell lines AGS, CT26, and B16F1 were sensitive to cristazarin, with IC50 values of 18.2, 26.1, and 30.9 μg/mL, respectively, which highlights the value of cristazarin. Overall, our results suggest that 1% fructose under light conditions is required for cristazarin production by C. metacorallifera mycobionts, and cristazarin could be a good bioactive compound.

Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Özge Balcı ◽  
Merve Buldu ◽  
Ameen Uddin Ammar ◽  
Kamil Kiraz ◽  
Mehmet Somer ◽  
...  

AbstractBoron carbide powders were synthesized by mechanically activated annealing process using anhydrous boron oxide (B2O3) and varying carbon (C) sources such as graphite and activated carbon: The precursors were mechanically activated for different times in a high energy ball mill and reacted in an induction furnace. According to the Raman analyses of the carbon sources, the I(D)/I(G) ratio increased from ~ 0.25 to ~ 0.99, as the carbon material changed from graphite to active carbon, indicating the highly defected and disordered structure of active carbon. Complementary advanced EPR analysis of defect centers in B4C revealed that the intrinsic defects play a major role in the electrochemical performance of the supercapacitor device once they have an electrode component made of bare B4C. Depending on the starting material and synthesis conditions the conductivity, energy, and power density, as well as capacity, can be controlled hence high-performance supercapacitor devices can be produced.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
María de la Luz Cádiz-Gurrea ◽  
Diana Pinto ◽  
Cristina Delerue-Matos ◽  
Francisca Rodrigues

Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.


2006 ◽  
Vol 72 (6) ◽  
pp. 3924-3932 ◽  
Author(s):  
Erik Lys�e ◽  
Sonja S. Klemsdal ◽  
Karen R. Bone ◽  
Rasmus J. N. Frandsen ◽  
Thomas Johansen ◽  
...  

ABSTRACT Zearalenones are produced by several Fusarium species and can cause reproductive problems in animals. Some aurofusarin mutants of Fusarium pseudograminearum produce elevated levels of zearalenone (ZON), one of the estrogenic mycotoxins comprising the zearalenones. An analysis of transcripts from polyketide synthase genes identified in the Fusarium graminearum database was carried out for these mutants. PKS4 was the only gene with an enoyl reductase domain that had a higher level of transcription in the aurofusarin mutants than in the wild type. An Agrobacterium tumefaciens-mediated transformation protocol was used to replace the central part of the PKS4 gene with a hygB resistance gene through double homologous recombination in an F. graminearum strain producing a high level of ZON. PCR and Southern analysis of transformants were used to identify isolates with single insertional replacements of PKS4. High-performance liquid chromatography analysis showed that the PKS4 replacement mutant did not produce ZON. Thus, PKS4 encodes an enzyme required for the production of ZON in F. graminearum. Barley root infection studies revealed no alteration in the pathogenicity of the PKS4 mutant compared to the pathogenicity of the wild type. The expression of PKS13, which is located in the same cluster as PKS4, decreased dramatically in the mutant, while transcription of PKS4 was unchanged. This differential expression may indicate that ZON or its derivatives do not regulate expression of PKS4 and that the PKS4-encoded protein or its product stimulates expression of PKS13. Furthermore, both the lack of aurofusarin and ZON influenced the expression of other polyketide synthases, demonstrating that one polyketide can influence the expression of others.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Atefe Ghafurian Nasab ◽  
Sayed Ali Mortazavi ◽  
Farideh Tabatabaei Yazdi ◽  
Mahboobe Sarabi Jamab

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 602 ◽  
Author(s):  
Nguyen Van Quan ◽  
Dam Duy Thien ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Tran Dang Xuan

We previously reported the inhibitory potentials of momilactones A (MA) and B (MB) against key enzymes related to type 2 diabetes and obesity. In this study, antioxidant and anti-skin-aging activities of MA and MB were investigated and compared with tricin, a well-known antioxidant and antiaging flavonoid in rice. MA, MB, and tricin were purified from rice husk by column chromatography and their biological activities were subsequently assayed by in vitro trials. The contents of MA, MB, and tricin of different commercial rice cultivars in Japan were quantified and confirmed by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) and high-performance liquid chromatography (HPLC) analyses. The antioxidant assays revealed a synergistic activity of the mixture MA and MB (MAB, 1:1, v/v). In addition, in 2,2’-azino-bis (ABTS) assay, IC50 values of MAB (0.3 mg/mL) and tricin (0.3 mg/mL) was 4-fold and 9-fold greater than that of individual MB (1.3 mg/mL) or MA (2.8 mg/mL), respectively. The in vitro enzymatic assays on pancreatic elastase and tyrosinase indicated that MA and MB were potential to relief skin wrinkles and freckles. In detail, MA exerted higher inhibition on both enzymatic activities (30.9 and 37.6% for elastase and tyrosinase inhibition, respectively) than MB (18.5 and 12.6%) and MAB (32.0 and 19.7%) at a concentration of 2.0 mg/mL. Notably, MA and the mixture MAB exhibited stronger inhibitions on elastase and tyrosinase in comparison with tricin and vanillin. MA, MB, and tricin in rice are potential to develop cosmetics as well as supplements for skin aging treatments.


1999 ◽  
Vol 65 (12) ◽  
pp. 5504-5509 ◽  
Author(s):  
M. Quirasco ◽  
A. López-Munguía ◽  
M. Remaud-Simeon ◽  
P. Monsan ◽  
A. Farrés

ABSTRACT Dextransucrase production by Leuconostoc mesenteroidesNRRL B-512F in media containing carbon sources other than sucrose is reported for the first time. Dextransucrases were analyzed by gel electrophoresis and by an in situ activity assay. Their polymers and acceptor reaction products were also compared by 13C nuclear magnetic resonance and high-performance liquid chromatography techniques, respectively. From these analyses, it was found that, independently of the carbon source, L. mesenteroides NRRL B-512F produced dextransucrases of the same size and product specificity. The 5′ ends of dextransucrase mRNAs isolated from cells grown under different culture conditions were identical. Based on this evidence, we conclude that dextransucrases obtained from cells grown on the various carbon sources result from the transcription of the same gene. The control of expression occurs at this level. The low dextransucrase yields from cultures in d-glucose ord-fructose and the enhancement of dextransucrase gene transcription in the presence of sucrose suggest that an activating phenomenon may be involved in the expression mechanism. Dextransucrase mRNA has a size of approximately 4.8 kb, indicating that the gene is located in a monocistronic operon. The transcription start point was localized 34 bp upstream from the ATG start codon. The −10 and −35 sequences found, TATAAT and TTTACA, were highly homologous to the only glycosyltransferase promoter sequence reported for lactic acid bacteria.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4153
Author(s):  
Magdalena Martinka Maksymiak ◽  
Magdalena Zięba ◽  
Arkadiusz Orchel ◽  
Monika Musiał-Kulik ◽  
Marek Kowalczuk ◽  
...  

This article reports the studies on bioactive (co)oligoesters towards their use as controlled delivery systems of p-anisic acid. The objects of the study were oligo[3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate], (p-AA-CH2-HP)n oligoester, and oligo[(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate)-co-(3-hydroxybutyrate)] [(p-AA-CH2-HP)x-co-(HB)y (co)oligoesters containing p-anisic acid moiety (p-AA, as the bioactive end and side groups) connected to the polymer backbone through the susceptible to hydrolysis ester bonds. A thorough insight into the hydrolysis process of the bioactive (co)oligoesters studied has allowed us to determine the release profile of p-AA as well as to identify polymer carrier degradation products. The p-AA release profiles determined on the basis of high-performance liquid chromatography (HPLC) measurements showed that the release of the bioactive compound from the developed (co)oligoester systems was regular and no burst effect occurred. Biological studies demonstrated that studied (homo)- and (co)oligoesters were well tolerated by HaCaT cells because none of them showed notable cytotoxicity. They promoted keratinocyte growth at moderate concentrations. Bioactive (co)oligoesters containing p-anisic acid moiety had somewhat decreased cell proliferation at the highest concentration (100 µg/mL). The important practical inference of the current study is that the (co)oligoesters developed have a relatively large load of the biologically active substance (p-AA) per polymer macromolecule, which unlocks their potential application in the cosmetic industry.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3911 ◽  
Author(s):  
Yu-Meng Wang ◽  
Xiao-Ku Ran ◽  
Muhammad Riaz ◽  
Miao Yu ◽  
Qian Cai ◽  
...  

Tagetespatula L. is a widely cultivated herbal medicinal plant in China and other countries. In this study, two new 2, 3-dihydrobenzofuran glucosides (1, 2) and fourteen known metabolites (3–16) were isolated from the stems and leaves of T. patula (SLT). The chemical structures of the isolated compounds were characterized comprehensively based on one- and two-dimensional NMR spectroscopy and high resolution mass spectrometry. Absolute configurations of compounds 1 and 2 were determined by ECD calculations. Compounds 1 and 2 exhibited moderate in vitro inhibitory activities against human gastric cancer cell lines (AGS) with IC50 values of 41.20 μmol/L and 30.43 μmol/L, respectively. The fingerprint profiles of stems and leaves of T. patula with three color types of flowers (Janie Yellow Bright, Jinmen Orange, Shouyao Red and Yellow color) were established by high-performance liquid chromatography (HPLC). Ten different batches of stems and leaves were examined as follow: Shouyao Red and Yellow color (1, 2, 3), Janie Yellow Bright (4, 5, 6, 7) and Jinmen Orange (8, 9, 10). Twenty-two common peaks were identified with similarity values ranging from 0.910 to 0.977. Meanwhile, the average peak area of SLT in the three types of flowers was different and it was the highest in Janie Yellow Bright.


Sign in / Sign up

Export Citation Format

Share Document