scholarly journals Experimental Research on the Mechanical Properties of Tailing Microcrystalline Foam Glass

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2048 ◽  
Author(s):  
Jinliang Bian ◽  
Wanlin Cao ◽  
Lin Yang ◽  
Cunqiang Xiong

Tailing microcrystalline foam glass (TMFG) is a building material that not only has the characteristics of light weight, fire resistance, and thermal insulation, but also has decorative applications. TMFG has a broad application prospect, but there has been little research on the macroscale mechanical properties of this material. In order to analyze TMFG basic mechanical properties, a series of experimental studies were carried out by performing the four-point flexural, shear, uniaxial compression, and splitting tensile strength tests. The research showed that the foaming agent (SiC) had a great influence on the mechanical properties of the material. With the reduction of the amount of SiC, the strength of the material and brittle failure increased. The microcrystalline decoration surface improved the flexural strength and compression strength of the tailing microcrystalline foam glass. The modulus of elasticity and the Poisson’s ratio are discussed, and a formula for the modulus of elasticity is proposed. Based on the analysis of the stress and strain curves, a constitutive model is proposed for the application of tailing microcrystalline foam glass and future research on this material.

2018 ◽  
Vol 251 ◽  
pp. 02002 ◽  
Author(s):  
Sergey Parfenov ◽  
Anatoly Alekseytsev ◽  
Yuriy Vinokurov

Describes the theoretical preconditions of using mechanical properties of fine-grained concrete in the design of concrete structures subject to risks and the general safety. A technique for experimental studies and data on the fine-grained concrete deformative properties at different ages and different loading levels are presented. The regularities of the modulus of elasticity change from strength, type and age of concrete are revealed. Full diagrams of deformation of concrete are constructed. The results obtained can be used in the design of the fine-grained concrete structures in buildings having risks occurrence socioeconomic losses and able to resist of emergency actions.


2019 ◽  
Vol 12 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Guanghui Zhao ◽  
Jijia Zhong ◽  
Y.X. Zhang

Background: Short carbon fibre reinforced epoxy composites have many advantages such as high strength-to-weight ratio, corrosion resistance, low cost, short fabrication time and easy manufacturing. Researches on the mechanical performance of the composites are mainly carried out by means of experimental techniques and numerical calculation. Objective: The study aims to report the latest progress in the studies of mechanical properties of short carbon fibre reinforced epoxy composites. Methods: Based on recently published patents and journal papers, the experimental studies of short carbon fibre reinforced epoxy composites are reviewed and the effects of short carbon fibre on the mechanical properties of the composites are discussed. Numerical studies using representative volume element in simulating macroscopic mechanical properties of the short fibre reinforced composites are also reviewed. Finally, future research of short carbon fibre reinforced epoxy composites is proposed. Results: Experimental techniques, experimental results and numerical simulating methods are discussed. Conclusion: Mechanical properties of epoxy can be improved by adding short carbon fibres. Fiber surface treatment and matrix modification are effective in enhancing interfacial adhesion between fiber and matrix, and as a result, better mechanical performance is achieved. Compared to the studies on equivalent mechanical properties of the composites, researches on the micro-mechanism of interaction between fiber and matrix are still in infancy due to the complexity of both the internal structure and reinforcing mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yanling Jia ◽  
Yongxu Xia ◽  
Xindong Chen ◽  
Yongdi Zhou ◽  
Xingbo Han ◽  
...  

At present, there are an ever-increasing number of tunnel expansion projects in China. Studying the mechanical properties of the expanded tunnels is of great significance for guiding their safe construction. Through model testing and numerical simulation, the mechanical properties of a double-arch tunnel constructed through the expansion of the middle pilot heading from an existing single-tube tunnel were studied. The variation characteristics of the surface subsidence, surrounding rock stress, and stress and strain of the middle partition wall and lining during the tunnel reconstruction and expansion were investigated. The mechanism for transferring stress and strain between the left and right tunnel tubes was studied by a numerical simulation method. The results showed that the surface subsidence caused by the excavation of the left (i.e., the subsequent) tunnel tube was larger, and the maximum surface subsidence occurred at the right (i.e., the first) tunnel tube. The surrounding rock on the middle wall was the sensitive part of the tunnel excavation, the stress of the surrounding rock at the left spandrel of the right tunnel tube fluctuated and exhibited the most complex variation, and the stress of the surrounding rock at the right spandrel of the left tunnel tube exhibited the largest variation. The excavation of the left tunnel tube had a great influence on the forces of the middle partition wall and the lining structure of the right tunnel tube, the middle partition wall was subjected to eccentric compression towards the left tunnel tube, and the stress at the left spandrel under the initial support of the right tunnel tube exhibited complex variations. The excavation of the left and right tunnel tubes had a great influence on the stability of the surrounding rock, as well as on the force-induced deformation of the middle partition wall and the support structure, within the width of the single tunnel tube span behind the tunnel working face. Due to the different construction sequences, the stress and strain at the symmetric measurement points of the middle partition wall, as well as the left and right tunnel support structures, were very different.


2010 ◽  
Vol 97-101 ◽  
pp. 1620-1623 ◽  
Author(s):  
Hong Zhi Cui ◽  
Feng Xing

Many investigations have been conducted on compressive strength of lightweight aggregate concretes (LWAC), but there are few experimental studies on the relationship between compressive strength, bond strength and elastic modulus of LWAC. In this paper, the specimens of twenty kinds of LWACs with different mix proportions were made. Properties of compressive strength, bond strength and modulus of elasticity of the LWACs were tested. Based on the testing resulting, equations for relationship between bond strength and compressive strength of the LWAC were established. For LWAC modulus of elasticity, the experimental results of this study can fit well with predicted equation of ACI 318


2019 ◽  
Vol 97 ◽  
pp. 02005
Author(s):  
Lam Tang Van ◽  
Dien Vu Kim ◽  
Hung Ngo Xuan ◽  
Tho Vu Dinh ◽  
Boris Bulgakov ◽  
...  

Light-weight aerated concrete (LAC) is produced by making LAC involves the addition of a gas-forming admixture like aluminium powder (AP) to a wet mortar mixture. In concrete during curing, AP will react with the calcium hydroxide in the mixture to form hydrogen. The amount of gas-forming is dependent on the mechanical properties requirements. The aim of the current work was to investigate the properties of aerated concrete (AC) containing 30% fly ash and various AP content, including dry density, porosity and modulus of elasticity, as well as strengths of test specimens. The results of this study showed that when AP content increased, the density of AC decreased, but its porosity increased. Whereas an increase in the amount of AP caused a decrease in both the compressive strength, tensile strength and the modulus of elasticity of ACspecimens. The investigation of newly modified AC through combination of local by-product in Vietnam would decrease the content of Portland cement was used and as well as reduce the amounts of ash and slag TPP as well as industrial waste thrown at a landfill. Therefore, assisting the thermoelectric power plants to be more environmentally friendly in the future.


2013 ◽  
Vol 457-458 ◽  
pp. 152-155
Author(s):  
Wen Zheng Dong ◽  
Qi Quan Lin ◽  
Tao Jiang ◽  
Zhi Gang Wang

The sintering behavior and the resulting of cermet are influenced not only by the characteristics and impurities of the raw materials but also are found to be dependent on the thermal history during the fabrication process. Our work is concerned with the effect of sintering temperature on the mechanical properties of 17Ni/(10NiO-NiFe2O4) cermet. The nickel ferrite based cermet were prepared by hot-press sintering technology at 16MPa and sintered at temperatures ranging from 900 to 1200°C. The microstructure, phase compositions and mechanical properties were studied by SEM, XRD and three point bending strength tests respectively. It has been found that, the relative density, hardness and bending strength of NiFe2O4 based cermet have a great influence upon the sintering temperature, and an optimal sintering temperature, e.g. 1100°C is chosen through our experiments. The highest bending strength of 125.89Mpa could be obtained under the sintering temperature of 1100°C. Meanwhile, the thermal shock resistance increases as the sintering temperature increases.


2014 ◽  
Vol 488-489 ◽  
pp. 94-97
Author(s):  
Long Wu ◽  
Yi Hong Zhao ◽  
Rong Fa Chen ◽  
Hua Yang ◽  
Qing Qing Li ◽  
...  

The MnO2 was used as foaming agent to produce the glass foams in this paper. The macro morphology, physical properties and the metallurgical structure were discussed in detail by the modern means of DTA, SEM and XRD analysis. The results indicated that the less dense and more uniform pore size of foam glass was prepared, and the good mechanical properties were obtained. And the main crystal was quartz, nepheline and albite by the XRD method.


2014 ◽  
Vol 223 ◽  
pp. 100-109 ◽  
Author(s):  
Łukasz Szparaga ◽  
Piotr Myśliński ◽  
Adam Gilewicz ◽  
Jerzy Ratajski

The paper describes issues related to the use of dilatometric methods for the study of thermo-mechanical properties of PVD gradient coatings. Tests were conducted on three types of CrCN / CrN coatings, which differed in the nature of the change of physico-chemical parameters in the gradient transition layer, deposited on a molybdenum substrate with the use of the cathodic arc evaporation method. The scope of the experimental studies included an analysis of the changes of the thermal “extortion” of the substrate – PVD coating system during annealing processes. In parallel, for comparison purposes, a mathematical description was proposed of gradient coatings containing the transition functions of material parameters. These functions describe the changes of such parameters as the Young's modulus, the Poisson's ratio, the thermal expansion coefficient, and the density as a function of spatial variables. Using the mathematical description proposed, numerical calculations of the state of thermal stress and strain for coatings are represented, respectively, by the transition function forms (a stepped, square, and square root) were carried via FEM. Based on the experimental and computational results obtained, the comparison between the elongation of the tested samples, and the state of thermal stress and strain in the substrate-gradient coating systems analysed were all specified.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 236
Author(s):  
Grigoriy Masiuk ◽  
Oleksandr Yushchuk ◽  
Andrii Paschenko

The article is devoted to the experimental studies of the stress and strain state of the two-pass reinforced concrete beams under the influence of low-cyclic repeated and alternating loads. Based on the results of experimental studies, the effect of low-cyclic repeated and alternating loads on the change of the stress and strain state of continuous reinforced concrete beams has been established. In the course of testing the sample, it was found that the stress and strain state of the beams under the action of the above mentioned loads is significantly different from the stress and strain state of the beams under the action of nonalternating static loads, namely, the decrease of the bearing capacity, the increase of the deflections and the width of the cracking. All this is due to the change in the physical and mechanical properties of concrete in response to the above-mentioned loads on experimental.  


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Alyssa Huntington ◽  
Kandace Donaldson ◽  
Raffaella De Vita

Abstract The vagina is an important organ of the female reproductive system that has been largely understudied in the field of biomechanics. In recent years, some research has been conducted to evaluate the mechanical properties of the vagina, but much has focused on characterizing the passive mechanical properties. Because vaginal contractions play a central role in sexual function, childbirth, and development and treatment of pelvic floor disorders, the active mechanical properties of the vagina must be also quantified. This review surveys and summarizes published experimental studies on the active properties of the vagina including the differences in such properties determined by anatomic regions and orientations, neural pathways, life events such as pregnancy and menopause, pelvic floor disorders such as prolapse, and surgical mesh treatment. Conflicting experimental findings are presented, illustrating the need for further research on the active properties of the vagina. However, consensus currently exists regarding the negative impact of surgical mesh on vaginal contractility. This review also identifies knowledge gaps and future research opportunities, thus proving a firm foundation for novice and experienced researchers in this emerging area of biomechanics and encouraging more activity on women's sexual and reproductive health research.


Sign in / Sign up

Export Citation Format

Share Document