scholarly journals Prototype Orthopedic Bone Plates 3D Printed by Laser Melting Deposition

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 906 ◽  
Author(s):  
Diana Chioibasu ◽  
Alexandru Achim ◽  
Camelia Popescu ◽  
George Stan ◽  
Iuliana Pasuk ◽  
...  

Laser melting deposition is a 3D printing method usually studied for the manufacturing of machine parts in the industry. However, for the medical sector, although feasible, applications and actual products taking advantage of this technique are only scarcely reported. Therefore, in this study, Ti6Al4V orthopedic implants in the form of plates were 3D printed by laser melting deposition. Tuning of the laser power, scanning speed and powder feed rate was conducted, in order to obtain a continuous deposition after a single laser pass and to diminish unwanted blown powder, stuck in the vicinity of the printed elements. The fabrication of bone plates is presented in detail, putting emphasis on the scanning direction, which had a decisive role in the 3D printing resolution. The printed material was investigated by optical microscopy and was found to be dense, with no visible pores or cracks. The metallographic investigations and X-ray diffraction data exposed an unusual biphasic α+β structure. The energy dispersive X-ray spectroscopy revealed a composition very similar to the one of the starting powder material. The mapping of the surface showed a uniform distribution of elements, with no segregations or areas with deficient elemental distribution. The in vitro tests performed on the 3D printed Ti6Al4V samples in osteoblast-like cell cultures up to 7 days showed that the material deposited by laser melting is cytocompatible.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3117
Author(s):  
Krzysztof Rodzeń ◽  
Mary Josephine McIvor ◽  
Preetam K. Sharma ◽  
Jonathan G. Acheson ◽  
Alistair McIlhagger ◽  
...  

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for ‘made-to-measure’ implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4492
Author(s):  
Eric Ofosu Kissi ◽  
Robin Nilsson ◽  
Liebert Parreiras Nogueira ◽  
Anette Larsson ◽  
Ingunn Tho

Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5433
Author(s):  
Seung-Ho Shin ◽  
Jung-Hwa Lim ◽  
You-Jung Kang ◽  
Jee-Hwan Kim ◽  
June-Sung Shim ◽  
...  

The amount of photopolymer material consumed during the three-dimensional (3D) printing of a dental model varies with the volume and internal structure of the modeling data. This study analyzed how the internal structure and the presence of a cross-arch plate influence the accuracy of a 3D printed dental model. The model was designed with a U-shaped arch and the palate removed (Group U) or a cross-arch plate attached to the palate area (Group P), and the internal structure was divided into five types. The trueness and precision were analyzed for accuracy comparisons of the 3D printed models. Two-way ANOVA of the trueness revealed that the accuracy was 135.2 ± 26.3 µm (mean ± SD) in Group U and 85.6 ± 13.1 µm in Group P. Regarding the internal structure, the accuracy was 143.1 ± 46.8 µm in the 1.5 mm-thick shell group, which improved to 111.1 ± 31.9 µm and 106.7 ± 26.3 µm in the roughly filled and fully filled models, respectively. The precision was 70.3 ± 19.1 µm in Group U and 65.0 ± 8.8 µm in Group P. The results of this study suggest that a cross-arch plate is necessary for the accurate production of a model using 3D printing regardless of its internal structure. In Group U, the error during the printing process was higher for the hollowed models.


Author(s):  
Michele Conti ◽  
Stefania Marconi ◽  
Ferdinando Auricchio

Endovascular aortic repair is a minimally invasive procedure to treat aortic diseases such as aneurysms and dissections. Thanks to technological advancements, such procedure has steadily shifted from the abdominal aorta towards the ascending part, i.e., near the heart, calling for an extensive and comprehensive benchmarking of (novel) endografts. Given such considerations, we have exploited porcine aorta with a pulse duplicator to analyse the mechanical interaction between the endovascular device and the native tissue. Our results have implications for using the porcine aorta as a model for human aorta in research. Particularly, the combination of in vitro tests performed using ex-vivo tissue, integrated validated patient-specific numerical simulations, mock arteries manufactured by 3D printing, can offer important insight on biomechanical impact of endograft design on post-operative aortic mechanical response.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3305
Author(s):  
Pablo Kraemer Fernandez ◽  
Alexey Unkovskiy ◽  
Viola Benkendorff ◽  
Andrea Klink ◽  
Sebastian Spintzyk

(1) Background: To date, no information on the polishability of milled and 3D-printed complete denture bases has been provided, which is relevant in terms of plaque accumulation. (2) Methods: three groups (n = 30) were manufactured using the cold-polymerization polymethilmethacrilate, milling (SM) and 3D printing (AM). 10 specimens of each group were left untreated (reference). 10 more specimens were pre-polished (intermediate polishing) and 10 final specimens were highgloss polished. An additional 20 specimens were 3D printed and coated with the liquid resin (coated), 10 of which were additionally polished (coated + polished). For each group Ra and Rz values, gloss value and REM images were obtained. (3). The “highgloss-polished” specimens showed statistically lower Ra and Rz values in the SM, followed by AM and conventional groups. In the AM group statistically lower surfaces roughness was revealed for highgloss-polished, “coated + polished”, and “coated” specimens, respectively. (4) Conclusions: The milled specimens demonstrated superiors surface characteristics than 3D printed and conventionally produced after polishing. The polished specimens demonstrated superior surface characteristics over coated specimens. However, the surface roughness by both polished and coated specimens was within the clinically relevant threshold of 0.2 µm.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1138
Author(s):  
Xiaofeng Cao ◽  
Wufei Ge ◽  
Yihu Wang ◽  
Ming Ma ◽  
Ying Wang ◽  
...  

Although bone repair scaffolds are required to possess high radiopacity to be distinguished from natural bone tissues in clinical applications, the intrinsic radiopacity of them is usually insufficient. For improving the radiopacity, combining X-ray contrast agents with bone repair scaffolds is an effective method. In the present research, MgNH4PO4·H2O/SrHPO4 3D porous composite scaffolds with improved radiopacity were fabricated via the 3D printing technique. Here, SrHPO4 was firstly used as a radiopaque agent to improve the radiopacity of magnesium phosphate scaffolds. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to characterize the phases, morphologies, and element compositions of the 3D porous composite scaffolds. The radiography image showed that greater SrHPO4 contents corresponded to higher radiopacity. When the SrHPO4 content reached 9.34%, the radiopacity of the composite scaffolds was equal to that of a 6.8 mm Al ladder. The porosity and in vitro degradation of the porous composite scaffolds were studied in detail. The results show that magnesium phosphate scaffolds with various Sr contents could sustainably degrade and release the Mg, Sr, and P elements during the experiment period of 28 days. In addition, the cytotoxicity on MC3T3-E1 osteoblast precursor cells was evaluated, and the results show that the porous composite scaffolds with a SrHPO4 content of 9.34% possessed superior cytocompatibility compared to that of the pure MgNH4PO4·H2O scaffolds when the extract concentration was 0.1 g/mL. Cell adhesion experiments showed that all of the scaffolds could support MC3T3-E1 cellular attachment well. This research indicates that MgNH4PO4·H2O/SrHPO4 porous composite scaffolds have potential applications in the bone repair fields.


2020 ◽  
Vol 10 (4) ◽  
pp. 310-318
Author(s):  
Sara Bouhazma ◽  
Imane Adouar ◽  
Sanae Chajri ◽  
Smaiel Herradi ◽  
Mohamed Khaldi ◽  
...  

Bioactive powders of the binary SiO2-CaO, ternary SiO2-CaO-P2O5 and quaternary systems SiO2-CaO-P2O5-Na2O/Mg2O were synthesized using a sol-gel route. The gels were converted into bioglasses powders by heat treatments at the temperature of 700°C. The resulting materials were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM) and in vitro bioactivity in acellular Simulated Body Fluid (SBF). The in vitro tests showed that the samples had good apatite-forming ability. Glasses doped with sodium and magnesium show good results in terms of bioactivity and mechanical properties. The results showed that the quaternary glass SiO2-CaO-P2O5-Na2O containing Na is the most bioactive, only 6 hours after its immersion in SBF; a layer of hydroxycarbonated apatite (HAC) was deposited on the glass and compressive strength of up to 233.08 MPa with a porosity of 11.02%, due to the presence of the Na2Ca2Si3O9 phase. Magnesium also affects bioactivity because it has improved from binary to ternary to quaternary doped with magnesium, bioactive from 12h of contact with the SBF.


Sign in / Sign up

Export Citation Format

Share Document