scholarly journals Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3687
Author(s):  
Muhannad Al Aiti ◽  
Amit Das ◽  
Mikko Kanerva ◽  
Maija Järventausta ◽  
Petri Johansson ◽  
...  

In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1266
Author(s):  
Xing Zhang ◽  
Yucun Liu ◽  
Tao Chai ◽  
Zhongliang Ma ◽  
Kanghui Jia

In this research, differential scanning calorimetry (DSC) was employed to compare the curing reaction kinetics of the epoxidized hydroxyl terminated polybutadiene-isophorone diisocyanate (EHTPB-IPDI) and hydroxyl terminated polybutadiene-isophorone diisocyanate (HTPB-IPDI) binder systems. Glass transition temperature (Tg) and mechanical properties of the EHTPB-IPDI and HTPB-IPDI binder systems were determined using the DSC method and a universal testing machine, respectively. For the EHTPB-IPDI binder system, the change of viscosity during the curing process in the presence of dibutyltin silicate (DBTDL) and tin 2-ethylhexanoate (TECH) catalysts was studied, and the activation energy was estimated. The results show that the activation energies (Ea) of the curing reaction of the EHTPB-IPDI and HTPB-IPDI binder systems are 53.8 and 59.1 kJ·mol−1, respectively. While their average initial curing temperatures of the two systems are 178.2 and 189.5 °C, respectively. The EHTPB-IPDI binder system exhibits a higher reactivity. Compared with the HTPB-IPDI binder system, the Tg of the EHTPB-IPDI binder system is increased by 5 °C. Its tensile strength and tear strength are increased by 12% and 17%, respectively, while its elongation at break is reduced by 10%. Epoxy groups and isocyanates react to form oxazolidinones, thereby improving the mechanical properties and thermal stability of polyurethane materials. These differences indicate that the EHTPB-IPDI binder system has better thermal stability and mechanical properties. During the EHTPB-IPDI binder system’s curing process, the DBTDL catalyst may ensure a higher viscosity growth rate, indicating a better catalytic effect, consistent with the prediction results obtained using the non-isothermal kinetic analysis method.


2018 ◽  
Vol 25 (4) ◽  
pp. 745-751 ◽  
Author(s):  
Yanwei Jing ◽  
Xueying Nai ◽  
Li Dang ◽  
Donghai Zhu ◽  
Yabin Wang ◽  
...  

Abstract The influence of calcium carbonate (CaCO3) with different polymorphs (calcite and aragonite) and morphologies (granular and rod-like) on mechanical and crystallization properties of polypropylene (PP) was investigated. Meanwhile, these CaCO3 fillers coated with oleic acid were added in different contents to PP. The results indicate that the tensile strength, flexural strength, modulus, and crystallization property of the filler-treated samples are improved, but the impact strength decreased. The crystallinity of the composites is higher than that of neat PP. Moreover, in the rod shape filler-treated sample, in both whisker species, the mechanical properties of composites are superior to the particles filled. Differential scanning calorimetry, X-ray diffraction, and mechanical tests display that calcite whisker-reinforced composite has higher crystallization enthalpy, melting enthalpy, degree of crystallinity, and mechanical properties than aragonite whiskers and calcite particles filled composites.


2021 ◽  
Vol 11 (13) ◽  
pp. 6218
Author(s):  
Balázs Ádám ◽  
Zoltán Weltsch

Polylactic acid (PLA) is one of the most promising biopolymers often used as a raw material in 3D printing in many industrial areas. It has good mechanical properties, is characterized by high strength and stiffness, but unfortunately, it has some disadvantages; one is brittleness, and the other is slow crystallization. Amounts of 1–5% SEBS (styrene-ethylene-butylene-styrene) thermoplastic elastomer were blended into the PLA and the thermal and mechanical properties were investigated. DSC (Differential Scanning Calorimetry) measurements on the filaments have shown that SEBS increases the initial temperature of crystallization, thereby acting as a nucleating agent. The cooling rate of 3D printing, on the other hand, is too fast for PLA, so printed specimens behave almost amorphously. The presence of SEBS increases the impact strength, neck formation appears during the tensile test, and in the bending test, the mixture either suffers partial fracture or only bends without fracture. Samples containing 1% SEBS were selected for further analysis, mixed with 0.06 and 0.1% carbon nanotubes (CNTs), and tested for thermal and mechanical properties. As a result of CNTs, another peak appeared on the DSC curve in addition to the original single-peak crystallization, and the specimens previously completely broken in the mechanical tests suffered partial fractures, and the partially fractured pieces almost completely regained their original shape at the end of the test.


2019 ◽  
pp. 089270571989506
Author(s):  
Jiyong Luo ◽  
Qin Tian ◽  
Shuhao Qin ◽  
Yating Qi ◽  
Jiali Li ◽  
...  

Nanocomposites composed of polypropylene (PP), organoclay, ethylene acrylic acid (EAA), and maleic anhydride-grafted polypropylene (PP- g-MA) were prepared using the melt mixing technique, and their thermal stability properties were investigated. PP- g-MA and EAA were used as compatibilizers in the nanocomposites. The effects of different concentrations of organoclay on the physical properties of nanocomposites were investigated. The kinetics of PP/organoclay nanocomposite degradation were investigated by thermogravimetric analysis, the activation energy of nanocomposite system was confirmed by the Kissinger method, and the performance of nanocomposites was investigated by differential scanning calorimetry, ARES rheometer, and transmission electron microscopy. The test results show that the addition of organoclay can improve the thermal stability of PP/organoclay nanocomposites, and the activation energy is slightly improved; rheological analysis shows that as the organoclay is gradually added to the composite system; the fluidity of PP and the processing properties are improved. In addition, the mechanical properties were measured, and it was found that an appropriate organoclay content can effectively improve the mechanical properties of nanocomposites.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Morteza Hajian ◽  
Gholam Ali Koohmareh ◽  
Afsaneh Mostaghasi

The effects of titanate as a coupling agent and some particulate nanoscale particles such as TiO2, CaCO3, and ZnO on thermal and mechanical properties of emulsion polyvinylchloride (E-PVC) were investigated by thermogravimetric analysis (TGA), and mechanical tests. In this research, it was found that, in the presence of nanoparticles of CaCO3, TiO2, and ZnO, the peak temperature of dehydrochlorination of E-PVC was shifted to higher temperatures, and the rate of mass loss was decreased. Also results of differential scanning calorimetry showed that the addition of nanoparticle of CaCO3, TiO2, and ZnO led to an increase in glass transition temperature. The impact strength, elastic modulus and toughness of the samples were enhanced after addition of 0–10 part of filer in hundred parts of resin (phr) nano-CaCO3, nano-TiO2, and nano-ZnO due to improvement of compatibility of the polymer and the nano-particles. Also UV and thermal stability of the samples were enhanced by means of the nanoparticles. It was found that, in the presence of titanate as coupling agent, content of additives that could be used in the composite of PVC shifts to higher amounts.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 567
Author(s):  
Hong Yang ◽  
Mingyu Gao ◽  
Jinxin Wang ◽  
Hongbo Mu ◽  
Dawei Qi

In the absence of high-quality hardwood timber resources, we have gradually turned our attention from natural forests to planted fast-growing forests. However, fast-growing tree timber in general has defects such as low wood density, loose texture, and poor mechanical properties. Therefore, improving the performance of wood through efficient and rapid technological processes and increasing the utilization of inferior wood is a good way to extend the use of wood. Densification of wood increases the strength of low-density wood and extends the range of applications for wood and wood-derived products. In this paper, the effects of ultrasonic and vacuum pretreatment on the properties of high-performance wood were explored by combining sonication, vacuum impregnation, chemical softening, and thermomechanical treatments to densify the wood; then, the changes in the chemical composition, microstructure, and mechanical properties of poplar wood before and after treatment were analyzed comparatively by FT-IR, XRD, SEM, and mechanical tests. The results showed that with ultrasonic pretreatment and vacuum impregnation, the compression ratio of high-performance wood reached its highest level and the MOR and MOE reached their maximums. With the help of this method, fast-growing softwoods can be easily prepared into dense wood materials, and it is hoped that this new material can be applied in the fields of construction, aviation, and automobile manufacturing.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


Sign in / Sign up

Export Citation Format

Share Document