scholarly journals Fabrication and Mechanical Properties of Cr2AlC MAX Phase Coatings on TiBw/Ti6Al4V Composite Prepared by HiPIMS

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 826
Author(s):  
Muhammad Waqas Qureshi ◽  
Xinxin Ma ◽  
Guangze Tang ◽  
Bin Miao ◽  
Junbo Niu

The high-power impulse magnetron sputtering (HiPIMS) technique is widely used owing to the high degree of ionization and the ability to synthesize high-quality coatings with a dense structure and smooth morphology. However, limited efforts have been made in the deposition of MAX phase coatings through HiPIMS compared with direct current magnetron sputtering (DCMS), and tailoring of the coatings’ properties by process parameters such as pulse width and frequency is lacking. In this study, the Cr2AlC MAX phase coatings are deposited through HiPIMS on network structured TiBw/Ti6Al4V composite. A comparative study was made to investigate the effect of average power by varying frequency (1.2–1.6 kHz) and pulse width (20–60 μs) on the deposition rate, microstructure, crystal orientation, and current waveforms of Cr2AlC MAX phase coatings. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the deposited coatings. The influence of pulse width was more profound than the frequency in increasing the average power of HiPIMS. The XRD results showed that ex situ annealing converted amorphous Cr-Al-C coatings into polycrystalline Cr2AlC MAX phase. It was noticed that the deposition rate, gas temperature, and roughness of Cr2AlC coatings depend on the average power, and the deposition rate increased from 16.5 to 56.3 nm/min. Moreover, the Cr2AlC MAX phase coatings produced by HiPIMS exhibits the improved hardness and modulus of 19.7 GPa and 286 GPa, with excellent fracture toughness and wear resistance because of dense and column-free morphology as the main characteristic.

2019 ◽  
Vol 374 ◽  
pp. 383-392 ◽  
Author(s):  
Houpu Wu ◽  
Qinwen Tian ◽  
Xiubo Tian ◽  
Chunzhi Gong ◽  
Xinyu Zhang ◽  
...  

2010 ◽  
Vol 82 (6) ◽  
pp. 1247-1258 ◽  
Author(s):  
Arutiun P. Ehiasarian

High-power impulse magnetron sputtering (HIPIMS) was introduced in the late 1990s as a unique physical vapor deposition method. The technology utilizes magnetron sputtering cathodes and high peak power density of up to 3 kW cm–2 on the target. The plasma produces a metal flux with high degree of ionization. HIPIMS has been successfully used as a substrate pretreatment method to enhance coating adhesion by promoting local epitaxial growth. As a deposition technology, HIPIMS produces high-density microstructure films. It has been industrialized and has successful applications in hard, electronic, and optical coatings.


2014 ◽  
Vol 605 ◽  
pp. 487-490 ◽  
Author(s):  
Tomas Roch ◽  
Pavol Durina ◽  
Martin Truchly ◽  
Tomas Plecenik ◽  
Branislav Grancic ◽  
...  

Titanium dioxide gas sensors are typically employing metastable anatase nanocrystalline phase. Operation at high temperature can thus negatively affect their long term stability. Employment of rutile phase with strong texture and larger grain size may ensure better reliability and longer lifetime. Therefore in this work we study the possibility to utilize stable rutile phase thin films prepared at relatively low temperature on c-cut sapphire substrates. Technological conditions have been chosen in order to obtain highly oriented titanium dioxide rutile thin films using reactive DC magnetron sputtering on unheated substrates. Subsequent ex-situ annealing in temperature range from 500°C to 800°C leads to increase of crystallite size and improvement of in-plane preferential orientation. Surface topography has been characterized by atomic force microscopy. Structure, texture and the strain evolution has been investigated using x-ray diffraction measurements. All investigated thin films showed epitaxial relationship with respect to the substrate: rutile-TiO2(100)[00 || Al2O3(0001)[10. Sensitivity of such rutile films to hydrogen has been measured and compared with our previous results on anatase thin films.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 542 ◽  
Author(s):  
Chin-Chiuan Kuo ◽  
Chun-Hui Lin ◽  
Yu-Tse Lin ◽  
Jing-Tang Chang

Environmentally-safe high-power impulse magnetron sputtering (HiPIMS) technology was utilized to deposit chromium films. This research focused on the influences of the HiPIMS pulse widths on the microstructure of films deposited at different deposition pressures and substrate bias voltages. Under the conditions of the same average HiPIMS power and duty cycle, the deposition rate of the Cr thin film at working pressure 0.8 Pa is slightly higher than at 1.2 Pa. Also, the difference between deposition rates under two pressures decreases with the discharge pulse width. The deposition rate of the short pulse width 60 μs is lowest, but those of 200 and 360 μs are approximately the same. With no or small direct current substrate biasing, the microstructure of films coated at short pulse width is similar to the typical magnetron sputtering deposited films. Elongating the pulse width enhances the ion flux toward the substrate and changes the film structure from individual prism-like columns into tangled 3-point/4-point star columns. Substantial synchronized substrate biasing and longer pulse width changes the preferred orientation of Cr films from Cr (110) to Cr (200) and Cr (211). The films deposited at longer pulse width exhibit a higher hardness due to the reducing of intercolumn voids.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Chin-Chiuan Kuo ◽  
Chun-Hui Lin ◽  
Jing-Tang Chang ◽  
Yu-Tse Lin

The Zr film microstructure is highly influenced by the energy of the plasma species during the deposition process. The influences of the discharge pulse width, which is the key factor affecting ionization of sputtered species in the high-power impulse magnetron sputtering (HiPIMS) process, on the obtained microstructure of films is investigated in this research. The films deposited at different argon pressure and substrate biasing are compared. With keeping the same average HiPIMS power and duty cycle, the film growth rate of the Zr film decreases with increasing argon pressure and enhancing substrate biasing. In addition, the film growth rate decreases with the elongating HiPIMS pulse width. For the deposition at 1.2 Pa argon, extending the pulse width not only intensifies the ion flux toward the substrate but also increases the fraction of highly charged ions, which alter the microstructure of films from individual hexagonal prism columns into a tightly connected irregular column. Increasing film density leads to higher hardness. Sufficient synchronized negative substrate biasing and longer pulse width, which supports higher mobility of adatoms, causes the preferred orientation of hexagonal α-phase Zr films from (0 0 0 2) to (1 0 1¯ 1). Unlike the deposition at 1.2 Pa, highly charged ions are also found during the short HiPIMS pulse width at 0.8 Pa argon.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1269
Author(s):  
Chin-Chiuan Kuo ◽  
Chun-Hui Lin ◽  
Jing-Tang Chang ◽  
Yu-Tse Lin

Chromium-carbon films were deposited by utilizing reactive high-power impulse magnetron sputtering at different mixture ratios of ethyne and argon atmosphere, and different substrate bias voltages and deposition temperature, with the same pulse frequency, duty cycle, and average power. The microstructure and mechanical properties of the obtained films were compared. The films consist of amorphous or nanocrystalline chromium carbide, hydrogenated amorphous carbon, and minor α-chromium phase. Decreasing the fraction of ethyne increases the content of the α-chromium phase but decreases hydrogenated amorphous carbon phase. The film’s hardness increases by enhancing the negative substrate bias and raising the deposition temperature, which could be attributed to the increase of film density and the Hall–Petch strengthening effect induced by the nanoscale crystallization of the amorphous carbide phase.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2015 ◽  
Vol 574 ◽  
pp. 71-77 ◽  
Author(s):  
A.Y. Chen ◽  
Y. Bu ◽  
Y.T. Tang ◽  
Y. Wang ◽  
F. Liu ◽  
...  

2002 ◽  
Vol 09 (05n06) ◽  
pp. 1757-1760
Author(s):  
L. NAVARRETE ◽  
A. MARIÑO ◽  
H. SÁNCHEZ

Ultrathin films of (Bi–Pb)–Sr–Ca–Cu–O (2223) were produced by ex situ RF magnetron sputtering on MgO (100) substrates. Films with different thermal treatments and thickness varying between 30 nm and 300 nm were obtained and studied systematically. A structural characterization of these samples was carried out and correlated with their electrical properties and thickness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3633
Author(s):  
Štefan Michna ◽  
Iryna Hren ◽  
Jan Novotný ◽  
Lenka Michnová ◽  
Václav Švorčík

The application of thin monolayers helps to increase the endurance of a cutting tool during the drilling process. One such trendy coating is TiAlN, which guarantees high wear resistance and helps to “smooth out” surface defects. For this reason, a new type of weak TiAlN microlayer with a new composition has been developed and applied using the HIPIMs magnetron sputtering method. The aim of this study was to analyze surface-applied micro coatings, including chemical composition (EDX) and microstructure in the area of the coatings. Microstructural characterization and visualization of the surface structures of the TiAlN layer were performed using atomic force microscopy. To study the surface layer of the coatings, metallographic cross-sectional samples were prepared and monitored using light and electron microscopy methods. The microhardness of the test layer was also determined. Analyses have shown that a 2-to-4-micron thick monolayer has a microhardness of about 2500 HV, which can help increase the life of cutting tools.


Sign in / Sign up

Export Citation Format

Share Document