scholarly journals Effect of Various Type of Nanoparticles on Mechanical and Tribological Properties of Wear-Resistant PEEK + PTFE-Based Composites

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1113
Author(s):  
Sergey V. Panin ◽  
Duc A. Nguyen ◽  
Dmitry G. Buslovich ◽  
Vladislav O. Alexenko ◽  
Aleksander V. Pervikov ◽  
...  

The mechanical and tribological properties of polyetheretherketone (PEEK)- and PEEK + PTFE (polytetrafluoroethylene)-based composites loaded with and four types of nanoparticles (carbonaceous, metallic, bimetal oxide, and ceramic) under metal- and ceramic-polymer tribological contact conditions were investigated. It was found that loading with the nanofillers in a small content (0.3 wt.%) enabled improvement of the elastic modulus of the PEEK-based composites by 10–15%. In the metal–polymer tribological contact, wear resistance of all nanocomposites was increased by 1.5–2.3 times. In the ceramic-polymer tribological contact, loading PEEK with metal nanoparticles caused the intensification of oxidation processes, the microabrasive counterpart wear, and a multiple increase in the wear rate of the composites. The three component “PEEK/10PTFE/0.3 nanofillers” composites provided an increase in wear resistance, up to 22 times, for the metal–polymer tribological contact and up to 12 times for the ceramic-polymer one (with a slight decrease in the mechanical properties) compared to that of neat PEEK. In all cases, this was achieved by the polymer transfer film formation and adherence on the counterparts. The various effects of the four types of nanoparticles on wear resistance were determined by their ability to fix the PTFE-containing transfer film on the counterpart surfaces.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 670
Author(s):  
Gifty Oppong Boakye ◽  
Arna María Ormsdóttir ◽  
Baldur Geir Gunnarsson ◽  
Sandeep Irukuvarghula ◽  
Raja Khan ◽  
...  

The selection of electroless nickel-phosphorus plating (ENP) has been inclined towards their properties and advantages with complex geometry applications. These properties include coating uniformity, low surface roughness, low wettability, high hardness, lubricity, and corrosion- and wear-resistance. Materials used in geothermal environments are exposed to harsh conditions such as high loads, temperature, and corrosive fluids, causing corrosion, scaling, erosion and wear of components. To improve the corrosion- and wear-resistance and anti-scaling properties of materials for geothermal environment, a ENP duplex coating with PTFE nanoparticles was developed and deposited on mild steel within the H2020 EU Geo-Coat project. ENP thin adhesive layer and ENP+PTFE top functional layer form the duplex structure of the coating. The objective of this study was to test the mechanical and tribological properties of the developed ENP-PTFE coatings with varying PTFE content. The microstructural, mechanical and tribological properties of the as-deposited coating with increasing PTFE content in the top functional layer in the order: ENP1, ENP2 and ENP3 were evaluated. The results showed maximum wear protection of the substrates at the lowest load; however, increasing load and sliding cycles increased the wear rates, and 79% increased lubrication was recorded for the ENP2 duplex coating. The wear performance of ENP3 greatly improved with a wear resistance of 8.3 × 104 m/mm3 compared to 6.9 × 104 m/mm3 for ENP2 and 2.1 × 104 m/mm3 for ENP1. The results are applicable in developing low friction, hydrophobic or wear-resistive surfaces for geothermal application.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2019 ◽  
Vol 26 (1) ◽  
pp. 402-411 ◽  
Author(s):  
Zhiwei Wu ◽  
Yan Wang ◽  
Sihao Li ◽  
Xiaoyong Wang ◽  
Zhaojun Xu ◽  
...  

AbstractBCN coatings with different chemical compositions were prepared using RF magnetron sputtering via adjusting N2 flow. The influence of N2 flow on the bonding structure, mechanical and tribological properties of coating was studied. The structural analysis indicated the coexistence of B-N, B-C, and N-C bonds, suggesting the formation of a ternary BCN hybridization. The maximum Vickers hardness of 1614.7 HV was obtained at the low N2 flow (5 sccm), whereas the adhesion strength of BCN coatings on 316L stainless steel was improved with an increase of N2 flow. The friction behavior of BCN coatings sliding against different materials (acerbic, beech and lauan wood) was performed using ball-on-disk tribo-meter in air. The low friction coefficient was easier to obtain as sliding against hardwood i.e. acerbic balls. BCN-5 and BCN-10 coatings presented better wear resistance regardless of softwood or hardwood, whilst other two coatings were more suitable for mating softwood i.e. beech and lauan.


2019 ◽  
Vol 32 (6) ◽  
pp. 645-654
Author(s):  
Xiaotao Qiu ◽  
Congli Fu ◽  
Aiqun Gu ◽  
Yang Gao ◽  
Xiuli Wang ◽  
...  

High-performance anti-wear polyetheretherketone/polytetrafluoroethylene (PEEK/PTFE) blends have drawn much attention over the past few years, owing to their wide range of potential applications. However, a convenient and effective method to prepare such blends with superior mechanical and tribological properties is still lacking. In this work, we propose a promising approach that uses melt-processable PTFE (MP PTFE), instead of conventional PTFE, to prepare anti-wear blends. MP PTFE, with melt flow abilities under appropriate conditions, can disperse homogeneously in PEEK, enhancing both the mechanical and tribological properties of the PEEK/PTFE blend. To prove this postulation, in this work, both MP PTFE and commercial PTFE were blended with PEEK, separately, and the effects of PTFE type and content on the tensile and tribological properties of the blends were studied. The results showed that, although the addition of commercial PTFE to PEEK could increase the wear resistance, it decreased the tensile strength of PEEK significantly. Compared to the blends with commercial PTFE, the blends with MP PTFE exhibited better tribological performance and higher tensile strength for PTFE content below 10 wt%. It was confirmed that the better dispersion of MP PTFE in PEEK endowed the blends with higher tensile strength. The surface analysis indicated that the MP PTFE could readily migrate to and enrich the surfaces of the blends. The relatively high PTFE content on the surface favored the formation of tribo-films, enhancing the tribological properties of the blends.


2013 ◽  
Vol 734-737 ◽  
pp. 2369-2372
Author(s):  
Lei Lei Gao ◽  
Jin Zhong Zhang

A commercial Mg alloy was prepared through equal channel angular extrusion (ECAE) process. The effect of ECAE on mechanical and tribological properties of the alloy was investigated. Experimental results showed that the hardness and strength of the alloy with ECAE were higher than that of the alloy without ECAE and increased with the increase pass number. The friction coefficient and wear resistance of the alloy after ECAE were significantly improved.


Tribologia ◽  
2018 ◽  
Vol 280 (4) ◽  
pp. 137-142
Author(s):  
Dagmara TRYBA ◽  
Marcin KOT ◽  
Anna ANTOSZ

Properties of high manganese austenitic cast steel are not satisfactory; therefore, this material should be hardened. Currently, the commonly used method of hardening does not allow eliminating problems related to premature wear of railway frogs. Therefore, many studies have been carried out to find an alternative method to obtain improved wear resistance of such elements. The article presents an analysis of the mechanical and tribological properties of base and hardened, by different methods, high-manganese cast steel applied for turnouts. Tests were performed for three hardening methods: explosive, pressure-rolling, and dynamic impact. The results were compared with the properties of base material after saturation treatment. The conducted tests allowed the determination of hardness profiles of hardened surfaces, as well as the wear resistance and coefficient of friction, and the obtained results are very promising. Hardening by dynamic impact provided much better results in relation to presently used explosive hardening technology.


Author(s):  
S. I. Bogodukhov ◽  
E. S. Kozik ◽  
E. V. Svidenko

Hard alloys are popular materials widely used in the toolmaking industry. Refractory carbides included in their composition make carbide tools very hard (80 to 92 HRA) and heat-resistant (800 to 1000 °С) so as they can be used at cutting speeds several times higher than those used for high-speed steels. However, hard alloys differ from the latter by lower strength (1000 to 1500 MPa) and the absence of impact strength, and this constitutes an urgent problem. We studied the influence of thermal cycling modes on the mechanical and tribological properties of VK8 (WC–8Co) hard alloy used in the manufacture of cutters and cutting inserts for metal working on metal-cutting machines. As the object of study, we selected 5×5×35 mm billets made of VK8 (WC–8Co) alloy manufactured by powder metallurgy methods at Dimitrovgrad Tool Plant. The following criteria were selected for heat treatment mode evaluation: Vickers hardness, flexural strength, and mass wear resistance (as compared to the wear of asreceived samples that were not heat treated). Plates in the initial state and after heat treatment were subjected to abrasion tests. Wear results were evaluated by the change in the mass of plates. Regularities of the influence of various time and temperature conditions of heat treatment on the tribological properties of products made of VK group tungsten hard alloys were determined. An increase in the number of thermal cycling cycles improved such mechanical properties of the VK8 hard alloy as strength and hardness. When repeating the cycles five times, an increase in abrasive wear resistance was obtained compared to the initial nonheat-treated sample. The elemental composition of the VK8 hard alloy changed insignificantly after thermal cycling, only a slight increase in oxygen was observed on the surface of plates. The grain size after thermal cycling increased in comparison with the initial VK8 hard alloy. It was found that VK8 hard alloy thermocyclic treatment leads to a change in the phase composition. X-ray phase analysis showed the presence of a large amount of α-Co with an hcp-type lattice on the surface of a hard alloy and a solid solution of WC in α-Co. A change in the cobalt modification ratio causes a decrease in microstresses. An analysis of the carbide phase structure state showed that the size of crystallites and microstresses changed after thermal cycling. The lattice constant of the cobalt cubic solid solution decreased, which may indicate a decrease in the amount of tungsten carbide and carbon dissolved in it. Statistical processing of experimental results included the calculation of the average value of the mechanical property, its dispersion and standard deviation in the selected confidence interval.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2837
Author(s):  
Sergey V. Panin ◽  
Jiangkun Luo ◽  
Dmitry G. Buslovich ◽  
Vladislav O. Alexenko ◽  
Lyudmila A. Kornienko ◽  
...  

The structure, mechanical and tribological properties of the polyimide-based composites reinforced with chopped carbon fibers (CCF) and loaded with solid-lubricant commercially available fillers of various natures were investigated. The metal- and ceramic counterparts were employed for tribological testing. Micron sized powders of PTFE, colloidal graphite and molybdenum disulfide were used for solid lubrication. It was shown that elastic modulus was enhanced by up to 2.5 times, while ultimate tensile strength was increased by up 1.5 times. The scheme and tribological loading conditions exerted the great effect on wear resistance of the composites. In the tribological tests by the ‘pin-on-disk’ scheme, wear rate decreased down to ~290 times for the metal-polymer tribological contact and to ~285 times for the ceramic-polymer one (compared to those for neat PI). In the tribological tests against the rougher counterpart (Ra~0.2 μm, the ‘block-on-ring’ scheme) three-component composites with both graphite and MoS2 exhibited high wear resistance. Under the “block-on-ring” scheme, the possibility of the transfer film formation was minimized, since the large-area counterpart slid against the ‘non-renewable’ surface of the polymer composite (at a ‘shortage’ of solid lubricant particles). On the other hand, graphite and MoS2 particles served as reinforcing inclusions. Finally, numerical simulation of the tribological test according to the ‘block-on-ring’ scheme was carried out. Within the framework of the implemented model, the counterpart roughness level exerted the significantly greater effect on wear rate in contrast to the porosity.


2021 ◽  
Vol 19 (4) ◽  
pp. 345-363
Author(s):  
Afshin Nafari ◽  
Hamidreza Ghandvar ◽  
Kh. a. Nekouee

In the present study, the influences of different SiC addition, MWCNTs and various SiC particle sizes on the structural, mechanical and tribological properties of ZC71 alloys were studied. The results revealed that the proper amount/size of SiC particles with the addition of MWCNTs had a considerable effect on the microstructural alteration, and mechanical and tribological properties of the ZC71 alloy. The Vickers hardness values of the ZC71 alloy improved with the addition of MWCNT and SiC. The UTS (216 MPa) and El.% (6.95 %) were achieved in the ZC71-5%SiC(15µm)-0.5%MWCNT. The cast ZC71 alloy showed brittle fracture with some quasi-cleavage characterizations. However, by adding 5% SiC(15 µm) and 0.5% MWCNT, the fracture mode changed to ductile fracture. The wear results showed that the ZC71-5%SiC-0.5%MWCNT hybrid composite had the highest wear resistance with the lowest friction coefficient and wear rate. Examination on the worn surface of the ZC71-5%SiC-0.5%MWCNT hybrid composite showed mild abrasion as the governing wear mechanism.%2


2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


Sign in / Sign up

Export Citation Format

Share Document