scholarly journals Electrorefining Process of the Non-Commercial Copper Anodes

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1187
Author(s):  
Radmila Markovic ◽  
Vesna Krstic ◽  
Bernd Friedrich ◽  
Srecko Stopic ◽  
Jasmina Stevanovic ◽  
...  

The electrorefining process of the non-commercial Cu anodes was tested on the enlarged laboratory equipment over 72 h. Cu anodes with Ni content of 5 or 10 wt.% and total content of Pb, Sn, and Sb of about 1.5 wt.% were used for the tests. The real waste solution of sulfuric acid character was a working electrolyte of different temperatures (T1 = 63 ± 2 °C and T2 = 73 ± 2 °C). The current density of 250 A/m2 was the same as in the commercial process. Tests were confirmed that those anodes can be used in the commercial copper electrorefining process based on the fact that the elements from anodes were dissolved, the total anode passivation did not occur, and copper is deposited onto cathodes. The masses of cathode deposits confirmed that the Cu ions from the electrolyte were also deposited onto cathodes. The concentration of Cu, As, and Sb ions in the electrolyte was decreased. At the same time, the concentration of Ni ions was increased by a maximum of up to 129.27 wt.%. The major crystalline phases in the obtained anode slime, detected by the X-ray diffraction analyses, were PbSO4, Cu3As, SbAsO4, Cu2O, As2O3, PbO, SnO, and Sb2O3.

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3103
Author(s):  
Laurent Gremillard ◽  
Agnès Mattlet ◽  
Alexandre Mathevon ◽  
Damien Fabrègue ◽  
Bruno Zberg ◽  
...  

Due to growing demand for metal-free dental restorations, dental ceramics, especially dental zirconia, represent an increasing share of the dental implants market. They may offer mechanical performances of the same range as titanium ones. However, their use is still restricted by a lack of confidence in their durability and, in particular, in their ability to resist hydrothermal ageing. In the present study, the ageing kinetics of commercial zirconia dental implants are characterized by X-ray diffraction after accelerated ageing in an autoclave at different temperatures, enabling their extrapolation to body temperature. Measurements of the fracture loads show no effect of hydrothermal ageing even after ageing treatments simulated a 90-year implantation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2001 ◽  
Vol 16 (6) ◽  
pp. 1769-1775 ◽  
Author(s):  
J. McChesney ◽  
M. Hetzer ◽  
H. Shi ◽  
T. Charlton ◽  
D. Lederman

The FexZn1−xF2 alloy has been shown to be a model system for studying the magnetic phase diagram of dilute magnets. Whereas the growth of bulk single crystals with fixed Zn concentrations is difficult, the thin film growth is comparatively simpler and more flexible. To gain an understanding of the growth of FexZn1−xF2 films, a method was developed to grow smooth films at fixed concentrations. This was done by depositing a MgF2 buffer layer on MgF2(001) substrates and then depositing FeF2 and ZnF2 [001]-orientated epitaxial thin films at different temperatures. Surprisingly, the lattice spacing depends strongly on the growth temperature, for 44-nm-thick FeF2 films and 77-nm-thick ZnF2 films. This indicates a significant amount of stress, despite the close lattice match between the films and the MgF2 substrate. Thick alloy samples (approximately 500 nm thick) were grown by co-evaporation from the FeF2 and ZnF2 sources at the ideal temperature determined from the growth study, and their concentration was accurately determined using x-ray diffraction.


2017 ◽  
Vol 867 ◽  
pp. 19-28 ◽  
Author(s):  
J. Lakshmipathy ◽  
Subburaj Rajesh Kannan ◽  
K. Manisekar ◽  
S. Vinoth Kumar

In this article, an attempt was made to study the mechanical behaviour of AA7068 - 6 vol. % of MoS2 - X vol. % of WC (X = 0, 5, 10 and 15) hybrid aluminium composites produced by blend–press–sinter methodology. Compacted Powders (700MPa) were sintered at different temperatures (450 0c, 500 0c and 550 0c ) in order to find the influence of sintering temperature on mechanical properties and tribological behavior of AA7068 hybrid composites.The sintered samples have been characterized by x-ray diffraction (XRD) method for identification of phases and also to investigate the phase changes. The change in density, hardness and porosity values of composites were reported. The composite with 15 vol. % of tungsten carbide and 6 vol. % of MoS2 showed the highest hardness and density at the sintering temperature range of 550 0c. Pin-on-disc type apparatus was used for determining the wear loss occurring at different conditions. The hybridization of the two reinforcements enhanced the wear resistance of the composites, especially under high applied load, sliding distance and sliding speeds. Due to this, the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors. The morphology of the wear debris and the worn out surfaces were analyzed to understand the wear mechanisms.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2009 ◽  
Vol 5 ◽  
pp. 135-142
Author(s):  
Jorge A. García-Macedo ◽  
A. Franco ◽  
Guadalupe Valverde-Aguilar ◽  
M.A. Ríos-Enríquez

The kinetics of the orientation of Disperse Red 1 (DR1) molecules embedded in nanostructured Polymethylmetacrylate (PMMA) films was studied under the effect of an intense constant electric poling field. The changes in the orientation distribution of the DR1 molecules were followed by Second Harmonic Generation (SHG) measurements. The SHG signal was recorded as function of time at three different temperatures. We focused on both, the signal increases under the presence of the poling field and the signal decays without the poling field. The studied PMMA films were nanostructured by the incorporation of ionic surfactants as the Sodium Dodecyl Sulfate (SDS) and the Cetyl Trimethyl Ammonium Bromide (CTAB) during their preparation. The kinds of nanostructures obtained in the films were determined by means of X-ray diffraction (XRD) measurements. Substantial differences in signal intensity and in growth and decay rates between amorphous and nanostructured films were found.


2012 ◽  
Vol 512-515 ◽  
pp. 158-161 ◽  
Author(s):  
Ling Dai ◽  
Qiang Xu ◽  
Shi Zhen Zhu ◽  
Ling Liu

As a new candidate material for the ceramic layer in thermal barrier coatings (TBCs) system, La3NbO7 was synthesized with La2O3 powder and Nb2O5 powder by solid state reaction. The stating powders with a mole ratio of La to Nb of 3:1 were mixed and then the mixture was calcined under the different temperatures(800°C, 1000°C, 1200°C) and dwell times(2h, 6h, 10h). The phase structure of the powder was observed by X–ray diffraction(XRD), and the microstructure of the sample was observed by scanning electron microscope(SEM). The effect of calcination temperature and dwell Time on the phase formation were examined. The results indicate that the La3NbO7 powder with single phase can be synthesized successfully at 1200°C for 10h in air, and the La3NbOsub>7 powders synthesized have an ultra-fine particle size of 0.5˜1µm with a granular particle shape. With the temperature increasing, LaNbO4/sub> was synthesized firstly and then La3NbO7 was synthesized with a mole ratio of La2O3 to LaNbO4 of 1:1.


Author(s):  
Guilherme Botega Torsoni ◽  
Cícero Rafael Cena ◽  
Gustavo Quereza de Freitas ◽  
Claudio Luis Carvalho

In this paper, we present a detailed route of synthesis to produce ceramic superconductor Bi1,6Pb0,4Sr2Ca2Cu3Ox (Bi,Pb)-2223 powder by Pechini method. The obtained polymeric precursor solution was produced by using inexpensive chemical reagents, which showed a great stability for three weeks with high concentration of BPSCCO inorganic ions. The crystallization kinetic of BPSCCO powder was investigated by thermal analysis (DSC/TGA) and X-ray diffraction (XRD) techniques. The thermal treatment of the BPSCCO powder at different temperatures showed that complex phase equilibrium occurs to the system. The three superconductor phases seems to coexist in a large range of temperature, the Bi-2201 phase was crystallized around 500 oC and then, after 840 oC the desirable (Bi,Pb)-2223 phase appears with coexistence of the Bi-2212 phase at low quantity. Finally, the powder morphology was characterized by scanning electron microscopy (SEM), the results point to a typical plate like formation of the grains.


Sign in / Sign up

Export Citation Format

Share Document