scholarly journals Quantitative 1H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation

Metabolites ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 248 ◽  
Author(s):  
Amanda L. Fuchs ◽  
Sage M. Schiller ◽  
Wyatt J. Keegan ◽  
Mary Cloud B. Ammons ◽  
Brian Eilers ◽  
...  

Macrophages (MΦs) are phagocytic immune cells that are found in nearly all human tissues, where they modulate innate and adaptive immune responses, thereby maintaining cellular homeostasis. MΦs display a spectrum of functional phenotypes as a result of microenvironmental and stress-induced stimuli. Evidence has emerged demonstrating that metabolism is not only crucial for the generation of energy and biomolecular precursors, but also contributes to the function and plasticity of MΦs. Here, 1D 1H NMR-based metabolomics was employed to identify metabolic pathways that are differentially modulated following primary human monocyte-derived MΦ activation with pro-inflammatory (M1) or anti-inflammatory (M2a) stimuli relative to resting (M0) MΦs. The metabolic profiling of M1 MΦs indicated a substantial increase in oxidative stress as well as a decrease in mitochondrial respiration. These metabolic profiles also provide compelling evidence that M1 MΦs divert metabolites from de novo glycerophospholipid synthesis to inhibit oxidative phosphorylation. Furthermore, glycolysis and lactic acid fermentation were significantly increased in both M1 and M2a MΦs. These metabolic patterns highlight robust metabolic activation markers of MΦ phenotypes. Overall, our study generates additional support to previous observations, presents novel findings regarding the metabolic modulation of human MΦs following activation, and contributes new knowledge to the rapidly evolving field of immunometabolism.

Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Helen Freyberger ◽  
Yunxiu He ◽  
Amanda Roth ◽  
Mikeljon Nikolich ◽  
Andrey Filippov

A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2260
Author(s):  
Amanda Fuchs ◽  
Isaac Miller ◽  
Sage Schiller ◽  
Mary Ammons ◽  
Brian Eilers ◽  
...  

Macrophages (MΦs) are prevalent innate immune cells, present throughout human bodily tissues where they orchestrate innate and adaptive immune responses to maintain cellular homeostasis. MΦs have the capacity to display a wide array of functional phenotypes due to different microenvironmental cues, particularly soluble bacterial secretory products. Recent evidence has emerged demonstrating that metabolism supports MΦ function and plasticity, in addition to energy and biomolecular precursor production. In this study, 1D 1H-NMR-based metabolomics was used to identify the metabolic pathways that are differentially altered following primary human monocyte-derived MΦ exposure to P. aeruginosa planktonic- and biofilm-conditioned media (PCM and BCM). Metabolic profiling of PCM- and BCM-exposed MΦs indicated a significant increase in glycolytic metabolism, purine biosynthesis, and inositol phosphate metabolism. In addition, these metabolic patterns suggested that BCM-exposed MΦs exhibit a hyperinflammatory metabolic profile with reduced glycerol metabolism and elevated catabolism of lactate and amino acids, relative to PCM-exposed MΦs. Altogether, our study reveals novel findings concerning the metabolic modulation of human MΦs after exposure to secretory microbial products and contributes additional knowledge to the field of immunometabolism in MΦs.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


Reproduction ◽  
2021 ◽  
Vol 162 (3) ◽  
pp. 181-191
Author(s):  
Jessica Ispada ◽  
Aldcejam Martins da Fonseca Junior ◽  
Otávio Luiz Ramos Santos ◽  
Camila Bruna de Lima ◽  
Erika Cristina dos Santos ◽  
...  

Metabolic and molecular profiles were reported as different for bovine embryos with distinct kinetics during the first cleavages. In this study, we used this same developmental model (fast vs slow) to determine if the relationship between metabolism and developmental kinetics affects the levels of acetylation or tri-methylation at histone H3 lysine 9 (H3K9ac and H3K9me3, respectively). Fast and slow developing embryos presented different levels of H3K9ac and H3K9me3 from the earliest stages of development (40 and 96 hpi) and up to the blastocyst stage. For H3K9me3, both groups of embryos presented a wave of demethylation and de novo methylation, although it was more pronounced in fast than slow embryos, resulting in blastocysts with higher levels of this mark. The H3K9ac reprogramming profile was distinct between kinetics groups. While slow embryos presented a wave of deacetylation, followed by an increase in this mark at the blastocyst stage, fast embryos reduced this mark throughout all the developmental stages studied. H3K9me3 differences corresponded to writer and eraser transcript levels, while H3K9ac patterns were explained by metabolism-related gene expression. To verify if metabolic differences could alter levels of H3K9ac, embryos were cultured with sodium-iodoacetate (IA) or dichloroacetate (DCA) to disrupt the glycolytic pathway or increase acetyl-CoA production, respectively. IA reduced H3K9ac while DCA increased H3K9ac in blastocysts. Concluding, H3K9me3 and H3K9ac patterns differ between embryos with different kinetics, the second one explained by metabolic pathways involved in acetyl-CoA production. So far, this is the first study demonstrating a relationship between metabolic differences and histone post-translational modifications in bovine embryos.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Killen García ◽  
Gisselle Escobar ◽  
Pablo Mendoza ◽  
Caroll Beltran ◽  
Claudio Perez ◽  
...  

Neisseria gonorrhoeae(Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1βsecretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1βin Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1βlevels about ten times compared with unexposed Ngo-infected MDM (P<0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC,P>0.05) and caspase-1 (CASP1,P>0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P>0.01). Notably ATP treatment defined an increase of positive staining for IL-1βwith a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1βsecretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 426 ◽  
Author(s):  
Jiro Koizumi ◽  
Naoki Takatani ◽  
Noritoki Kobayashi ◽  
Koji Mikami ◽  
Kazuo Miyashita ◽  
...  

Carotenoids are natural pigments that contribute to light harvesting and photo-protection in photosynthetic organisms. In this study, we analyzed the carotenoid profiles, including mono-hydroxy and epoxy-carotenoids, in the economically valuable red seaweed Pyropia yezoensis, to clarify the detailed biosynthetic and metabolic pathways in the order Bangiales. P. yezoensis contained lutein, zeaxanthin, α-carotene, and β-carotene, as major carotenoids in both the thallus and conchocelis stages. Monohydroxy intermediate carotenoids for the synthesis of lutein with an ε-ring from α-carotene, α-cryptoxanthin (β,ε-caroten-3’-ol), and zeinoxanthin (β,ε-caroten-3-ol) were identified. In addition, β-cryptoxanthin, an intermediate in zeaxanthin synthesis from β-carotene, was also detected. We also identified lutein-5,6-epoxide and antheraxanthin, which are metabolic products of epoxy conversion from lutein and zeaxanthin, respectively, by LC-MS and 1H-NMR. This is the first report of monohydroxy-carotenoids with an ε-ring and 5,6-epoxy-carotenoids in Bangiales. These results provide new insights into the biosynthetic and metabolic pathways of carotenoids in red seaweeds.


Author(s):  
KANCHAN K. MISHRA ◽  
SUMIT BHARADVA ◽  
MEGHNAD G. JOSHI ◽  
ARVIND GULBAKE

Dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, furthermore they act as a bridge between the innate and the adaptive immune systems they have been ideal candidates for cell-based immunotherapy of cancers and infections in humans. The first reported trial using DCs in 1995, since they have been used in trials all over the world for several of indications, including cancer and human immunodeficiency virus infection. Generally, for in vitro experiments or for DCs vaccination monocyte-derived dendritic cells (moDCs) were generated from purified monocytes that isolated from peripheral blood by density gradient centrifugation. A variety of methods can be used for enrichment of monocytes for generation of clinical-grade DCs. Herein we summarized up to date understanding of systems and inputs used in procedures to differentiate DCs from blood monocytes in vitro.


2009 ◽  
Vol 83 (24) ◽  
pp. 12947-12955 ◽  
Author(s):  
Manuela Ocaña-Macchi ◽  
Michael Bel ◽  
Laurence Guzylack-Piriou ◽  
Nicolas Ruggli ◽  
Matthias Liniger ◽  
...  

ABSTRACT Although current H5N1 highly pathogenic avian influenza viruses (HPAIV) are inefficiently transmitted to humans, infected individuals can suffer from severe disease, often progressing rapidly to acute respiratory distress syndrome and multiorgan failure. This is in contrast with the situation with human influenza viruses, which in immunocompetent individuals usually cause only a respiratory disease which is less aggressive than that observed with avian H5N1 viruses. While the biological basis of inefficient transmission is well documented, the mechanisms by which the H5N1 viruses cause fatal disease remain unclear. In the present study, we demonstrate that human pulmonary microvascular endothelial cells (hPMEC) had a clearly higher susceptibility to infection by H5N1 HPAIV than to infection by human influenza viruses. This was measurable by de novo intracellular nucleoprotein production and virus replication. It was also related to a relatively higher binding capacity to cellular receptors. After infection of hPMEC, cell activation markers E-selectin and P-selectin were upregulated, and the proinflammatory cytokines interleukin-6 and beta interferon were secreted. H5N1 virus infection was also associated with an elevated rate of cell death. Reverse genetics analyses demonstrated a major role for the viral hemagglutinin in this cell tropism. Overall, avian H5N1 viruses have a particular receptor specificity targeting endothelial cells that is different from human influenza viruses, and this H5N1 receptor specificity could contribute to disease pathogenesis.


2019 ◽  
Vol 3 (6) ◽  
pp. 839-850 ◽  
Author(s):  
Marius Döring ◽  
Hanna Blees ◽  
Nicole Koller ◽  
Sabine Tischer-Zimmermann ◽  
Mathias Müsken ◽  
...  

Abstract Dendritic cells (DCs) take up antigen in the periphery, migrate to secondary lymphoid organs, and present processed antigen fragments to adaptive immune cells and thus prime antigen-specific immunity. During local inflammation, recirculating monocytes are recruited from blood to the inflamed tissue, where they differentiate to macrophages and DCs. In this study, we found that monocytes showed high transporter associated with antigen processing (TAP)–dependent peptide compartmentalization and that after antigen pulsing, they were not able to efficiently stimulate antigen-specific T lymphocytes. Nevertheless, upon in vitro differentiation to monocyte-derived DCs, TAP-dependent peptide compartmentalization as well as surface major histocompatibility complex I turnover decreased and the cells efficiently restimulated T lymphocytes. Although TAP-dependent peptide compartmentalization decreased during DC differentiation, TAP expression levels increased. Furthermore, TAP relocated from early endosomes in monocytes to the endoplasmic reticulum (ER) and lysosomal compartments in DCs. Collectively, these data are compatible with the model that during monocyte-to-DC differentiation, the subcellular relocation of TAP and the regulation of its activity assure spatiotemporal separation of local antigen uptake and processing by monocytes and efficient T-lymphocyte stimulation by DCs.


Sign in / Sign up

Export Citation Format

Share Document