scholarly journals Characterization of Bioactive Compounds of Opuntia ficus-indica (L.) Mill. Seeds from Spanish Cultivars

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5734
Author(s):  
Joanna Kolniak-Ostek ◽  
Agnieszka Kita ◽  
Joanna Miedzianka ◽  
Lucia Andreu-Coll ◽  
Pilar Legua ◽  
...  

Opuntia ficus-indica (L.) Mill. is the Cactaceae plant with the greatest economic relevance in the world. It can be used for medicinal purposes, animal nutrition, production of biofuels and phytoremediation of soils. Due to its high content of bioactive compounds, the prickly pear has antioxidant, antimicrobial and anticancer properties. The aim of this study was to determine the polyphenolic, fatty acid and amino acid profile and characterize the antioxidant capacity of seeds of seven Spanish prickly pear cultivars. A total of 21 metabolites, mainly phenolic acids and flavonols, were identified using ultraperformance liquid chromatography photodiode detector quadrupole/time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS). Significant differences were found in the phenolic concentrations of the investigated varieties. The highest amount of phenolic compounds (266.67 mg/kg dry matter) were found in the “Nopal espinoso” variety, while the “Fresa” variety was characterized by the lowest content (34.07 mg/kg DM) of these compounds. In vitro antioxidant capacity was positively correlated with the amount of polyphenols. The amino acid composition of protein contained in prickly pear seeds was influenced by the variety. Glutamic acid was the predominant amino acid followed by arginine, aspartic acid and leucine, independent of prickly pear variety. Overall, 13 different fatty acids were identified and assessed in prickly pear seeds. The dominant fatty acid was linoleic acid, with content varying between 57.72% “Nopal ovalado” and 63.11% “Nopal espinoso”.

Author(s):  
Aleem Waheed Oyeleke ◽  
David Timilehin Oluwajuyitan ◽  
Olusola Matthew Oluwamukomi ◽  
Ndigwe Victor Enujiugha

The study aimed at evaluating the amino acid profile, fatty acid profile, anti-nutritional factors, functional properties and in-vitro antioxidant activities of Cucurbita maxima and Cucurbita mixta fruit pulps and seeds. Freshly harvested Cucurbita mixta and Cucurbita maxima fruit were processed into flour as; Pa: Cucurbita maxima pulp flour, Pi: Cucurbita mixta pulp flour, Sa: Cucurbita maxima seed flour and Si: Cucurbita mixta seed flour and were evaluated for amino acid profile, fatty acid profile, anti-nutritional factors, functional properties and in-vitro antioxidant activities. Triplicate data were analysed and means were separated using New Duncan Multiple Range Test (NDMRT) at p<0.05. The protein content of the fruit pulps and seeds flour samples were 12.77 g/100 g (Pi), 13.22 g/100 g (Pa), 15.37 g/100 g (Sa) and 16.86 g/100 g (Si). Total essential amino acid was 5.33 mg/100 g of protein (Pa) 6.62 mg/100 g of protein (Pi), 9.85 mg/100 g of protein (Sa) and 14.61 mg/100 g of protein (Si). Total essential amino acid of Pi and Si are significantly higher (p>0.05) than Pa and Sa. Statistically, saturated fatty acid and polyunsaturated fatty acid of the Pi and Si were significantly lower (p<0.05) than Pa and Sa respectively. Antioxidant activities against ABTS* (Pi) is significantly higher (p>0.05) than Pa and with no significant differences (p<0.05) between ABTS values of Si and Sa. While there is a significant difference (p<0.05) between Si and Sa as well as Pi and Pa antioxidant activities against DPPH* respectively. In conclusion, Cucurbita seeds and pulps flour contains high protein content, appreciable amount of essential minerals, lower Na/K molar ratio of less than one and they also exhibit a good free radical scavenging abilities against DPPH*, ABTS* and ability to reduce Fe3+ to Fe2+ with high content of total phenol and flavonoid.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


2019 ◽  
Vol 278 ◽  
pp. 568-578 ◽  
Author(s):  
Diana M. Amaya-Cruz ◽  
Iza F. Pérez-Ramírez ◽  
Jorge Delgado-García ◽  
Candelario Mondragón-Jacobo ◽  
Andrés Dector-Espinoza ◽  
...  

2005 ◽  
Vol 17 (2) ◽  
pp. 216
Author(s):  
P. Booth ◽  
T. Watson ◽  
H. Leese

Pre-implantation embryos can produce and consume amino acids in a manner dependent upon stage of embryonic development (Partridge and Leese 1996 Reprod. Fert. Dev. 8, 945) that may also be predictive of subsequent viability (Houghton et al. 2002 Hum. Reprod. 17, 999). To examine these relationships in the pig, the appearance or depletion of 18 amino acids from a presumptive near-physiological mixture was determined by HPLC in porcine in vitro-produced embryos from the zygote to the blastocyst stage. Cumulus oocyte complexes derived from slaughterhouse prepubertal pig ovaries were matured for 40 h in modified TCM-199 before being fertilized (Day 0) with frozen thawed semen in tris-based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20 in NCSU medium modified to contain a physiological mixture of 18 amino acids including 0.1 mM glutamine (NCSUaa). Groups of 2–10 embryos (dependent on stage) were removed on Day 0 (1 cell), Day 1 (2- and 4-cell), Day 4 (compact morula), and Day 6 (blastocyst) and placed in 4 μL NCSUaa for 24 h. After incubation, the embryos were removed and the medium analyzed by HPLC. Each stage was replicated 3–9 times. Since amino acid profiles of 2- and 4-cell embryos were not different, data were combined. Overall, arginine (1.19 ± 0.33), glutamine (0.78 ± 0.34) and threonine (0.05 ± 0.04) were significantly (P < 0.01) depleted from the medium whereas alanine (0.21 ± 0.1), glycine (0.20 ± 0.06), asparagine (0.13 ± 0.5), lysine (0.1 ± 0.03), isoleucine (0.08 ± 0.01), valine (0.05 ± 0.01), leucine (0.04 ± 0.02), phenylalanine (0.03 ± 0.01), and histidine (0.02 ± 0.04) significantly (P < 0.05) accumulated (mean of the 4 sampling timepoints; all values pmol/embryo/h ± SEM). The difference between amino acid accumulation and depletion (balance) was approximately equivalent between Day 0 and the morula stage although turnover (sum of depletion and accumulation) steadily decreased during this period from 3.1 on Day 0 to 1.35 pmol/embryo/h at the morula stage. However, at the blastocyst stage, turnover and balance increased to 6.32 and 2.42 pmol/embryo/h, respectively, i.e. net appearance occurred. Notable changes in amino acid profile during development included decreases in accumulation of asparagine, glutamate, and glycine in the medium and the depletion of glutamine over Days 0, 1, and 4, followed by reversal of these trends by Day 6. These data suggest that pig embryos can alter the accumulation and depletion rates of amino acids in a manner that is dependent on the specific amino acid and the stage of embryonic development. This work was supported by BBSRC.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 117 ◽  
Author(s):  
Federica Blando ◽  
Rossella Russo ◽  
Carmine Negro ◽  
Luigi De Bellis ◽  
Stefania Frassinetti

Plant extracts are a rich source of natural compounds with antimicrobial properties, which are able to prevent, at some extent, the growth of foodborne pathogens. The aim of this study was to investigate the potential of polyphenolic extracts from cladodes of Opuntia ficus-indica (L.) Mill. to inhibit the growth of some enterobacteria and the biofilm formation by Staphylococcus aureus. Opuntia ficus-indica cladodes at two stages of development were analysed for total phenolic content and antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) (in vitro assays) and by cellular antioxidant activity in red blood cells (CAA-RBC) (ex vivo assay). The Liquid Chromatography Time-of-Flight Mass Spectrometry (LC/MS–TOF) analysis of the polyphenolic extracts revealed high levels of piscidic acid, eucomic acid, isorhamnetin derivatives and rutin, particularly in the immature cladode extracts. Opuntia cladodes extracts showed a remarkable antioxidant activity (in vitro and ex vivo), a selective inhibition of the growth of Gram-positive bacteria, and an inhibition of Staphylococcus aureus biofilm formation. Our results suggest and confirm that Opuntia ficus-indica cladode extracts could be employed as functional food, due to the high polyphenolic content and antioxidant capacity, and used as natural additive for food process control and food safety.


2020 ◽  
Vol 4 (4) ◽  
pp. 193-201
Author(s):  
Bei Liu ◽  
Qingqing Xu ◽  
Yujing Sun

Abstract Goji berry tea, a traditional herbal tea, is the main ate mode of goji berry in Asia, yet few studies in comparison with red goji berry tea and black goji berry tea are carried out. This study investigated the effects of water temperature and soak time on the colour, phytochemicals, and the antioxidant capacity [2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), and the ferric-reducing antioxidant power (FRAP)] of two goji berry tea. A comparison of the bioactive compounds and antioxidant activities between black and red goji berry tea was conducted. Results showed that both red and black goji berry tea were rich in phytochemicals, giving high antioxidant ability. The levels of bioactive compounds and the antioxidant activity of the two goji berry tea increased as the increases in soak temperature and time. Black goji berry tea had higher phytochemicals and antioxidant property than those of red goji berry tea. Infused at 100° water for the same time, the levels of total polysaccharides (150 mg/100 ml), total polyphenols (238 mg/ml), and antioxidant capacity (550 μmol/100 ml) of black goji berry tea were 3.5, 2, and 5 times higher, respectively, in comparison with red goji berry tea. The results of this study demonstrate that hot drink of goji berry in China is a good habit and black goji berry tea may be a better choice.


Sign in / Sign up

Export Citation Format

Share Document