scholarly journals Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4805
Author(s):  
Ana S. Martins ◽  
Ana L. M. Batista de Carvalho ◽  
Maria P. M. Marques ◽  
Ana M. Gil

This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.

1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2021 ◽  
Vol 6 (1) ◽  
pp. 238146832199040
Author(s):  
Gregory S. Zaric

Background. Pharmaceutical risk sharing agreements (RSAs) are commonly used to manage uncertainties in costs and/or clinical benefits when new drugs are added to a formulary. However, existing mathematical models of RSAs ignore the impact of RSAs on clinical and financial risk. Methods. We develop a model in which the number of patients, total drug consumption per patient, and incremental health benefits per patient are uncertain at the time of the introduction of a new drug. We use the model to evaluate the impact of six common RSAs on total drug costs and total net monetary benefit (NMB). Results. We show that, relative to not having an RSA in place, each RSA reduces expected total drug costs and increases expected total NMB. Each RSA also improves two measures of risk by reducing the probability that total drug costs exceed any threshold and reducing the probability of obtaining negative NMB. However, the effects on variance in both NMB and total drug costs are mixed. In some cases, relative to not having an RSA in place, implementing an RSA can increase variability in total drug costs or total NMB. We also show that, for some RSAs, when their parameters are adjusted so that they have the same impact on expected total drug cost, they can be rank-ordered in terms of their impact on variance in drug costs. Conclusions. Although all RSAs reduce expected total drug costs and increase expected total NMB, some RSAs may actually have the undesirable effect of increasing risk. Payers and formulary managers should be aware of these mean-variance tradeoffs and the potentially unintended results of RSAs when designing and negotiating RSAs.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2021 ◽  
Vol 22 (11) ◽  
pp. 5692
Author(s):  
Mayra Colardo ◽  
Noemi Martella ◽  
Daniele Pensabene ◽  
Silvia Siteni ◽  
Sabrina Di Bartolomeo ◽  
...  

Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins’ signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.


2021 ◽  
Vol 11 (11) ◽  
pp. 5112
Author(s):  
Julia Vega ◽  
Geniane Schneider ◽  
Bruna R. Moreira ◽  
Carolina Herrera ◽  
José Bonomi-Barufi ◽  
...  

Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3745
Author(s):  
Hélène Vellemans ◽  
Marc P. E. André

Hodgkin lymphoma (HL) is a lymphoid-type hematologic disease that is derived from B cells. The incidence of this lymphoid malignancy is around 2–3/100,000/year in the western world. Long-term remission rates are linked to a risk-adapted approach, which allows remission rates higher than 80%. The first-line treatment for advanced stage classical HL (cHL) widely used today is doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) or escalated bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPesc) chemotherapy. Randomized studies comparing these two regimens and a recently performed meta-analysis have demonstrated consistently better disease control with BEACOPPesc. However, this treatment is not the standard of care, as there is an excess of acute hematological toxicities and therapy-related myeloid neoplasms. Moreover, there is a recurrent controversy concerning the impact on overall survival with this regimen. More recently, new drugs such as brentuximab vedotin and checkpoint inhibitors have become available and have been evaluated in combination with doxorubicin, vinblastine, and dacarbazine (AVD) for the first-line treatment of patients with advanced cHL with the objective of tumor control improvement. There are still major debates with respect to first-line treatment of advanced cHL. The use of positron emission tomography-adapted strategies has allowed a reduction in the toxicity of chemotherapy regimens. Incorporation of new drugs into the treatment algorithms requires confirmation.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 909
Author(s):  
Krzysztof Kotowski ◽  
Jakub Rosik ◽  
Filip Machaj ◽  
Stanisław Supplitt ◽  
Daniel Wiczew ◽  
...  

Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Aragon Herrera ◽  
S Feijoo-Bandin ◽  
M Otero Santiago ◽  
S Moranha Fernandez ◽  
L Anido Varela ◽  
...  

Abstract Background Empagliflozin is a potent, highly selective sodium glucose cotransporter-2 (SGLT2) inhibitor used as an effective and well-tolerated antihyperglycaemic agent. Beyond lowering glucose, empagliflozin exerts a favorable effect on a number of nonglycaemic outcomes, including modest reductions in bodyweight and blood pressure, and it has cardioprotective and renoprotective properties in patients with T2D and established cardiovascular disease (EMPA-REG OUTCOME). Purpose Since liver fat content represents a risk factor for cardiovascular diseases, and empagliflozin has been recently suggested to be able to contribute to the early treatment of nonalcoholic fatty liver disease in T2D, we aimed to study the effect of the empagliflozin treatment in the liver metabolome of type 2 diabetic rats. Methods Male ZDF-Leprfa/fa rats were treated with 30 mg/kg/d of empagliflozin p.o for six weeks. Metabolic profiling of the hepatic tissue was analyzed using UHPLC-MS based platforms. We performed a hematoxylin/eosin staining to determine the tissue integrity and liver fat accumulation, and a Masson's trichrome staining to analyze liver fibrosis. All animals were maintained and euthanized following protocols approved by the Animal Care Committee of the University of Santiago de Compostela in accordance with European Union Directive 2010/63. Results Empaglifozin treatment reduced blood glucose levels to normal (128.2±6.51 mg/dL), while untreated control rats showed high glucose levels (404.3±17.49 mg/dL). Hepatic histological analysis did not show differences regarding neither fat accumulation nor fibrosis between empagliflozin treated and control rats. Circulating levels of cholesterol, HDL, LDL, GTP, GGT triglycerides remained unaltered after empaglifozin treatment vs. control. 384 metabolites were analyzed in the liver tissue samples, observing significantly increased levels of 10 types of glycerolipids, 24 phosphatidylcholines, 8 amino acids, 1 polyunsaturated fatty acid, 4 lysophosphatidylethanolamines, 7 lysophosphatidylinositols, 1 carboxylic acid and 1 nucleoside in the empagliflozin treated rats with respect to the control group. In addition, treatment with empagliflozin produced a significant decrease of 1 glycerolipid, 1 phosphatidylcholine, 1 bile acid, 1 nucleoside and the NAD oxidoreduction coenzyme. Conclusions We demonstrated that empagliflozin significantly modify the liver content of the different lipid species, with the most relevant altered metabolic classes belonging to glycerophospholipids, especially monoacyl-species, and aromatic amino acids. Considering the suggested potential beneficial effect of the treatment with empagliflozin in the prevention of liver fibrosis, our metabolomics data can help to evaluate the impact and the mechanism of action of SGLT2 inhibitors at hepatic level. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Boehringer Ingelheim


Sign in / Sign up

Export Citation Format

Share Document