scholarly journals Efficacy of Polymer-Based Nanocarriers for Co-Delivery of Curcumin and Selected Anticancer Drugs

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1556 ◽  
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Cancer remains a heavy health burden resulting in a high rate of mortality around the world. The presently used anticancer drugs suffer from several shortcomings, such as drug toxicity, poor biodegradability and bioavailability, and poor water solubility and drug resistance. Cancer is treated effectively by combination therapy whereby two or more anticancer drugs are employed. Most of the combination chemotherapies result in a synergistic effect and overcome drug resistance. Furthermore, the design of polymer-based nanocarriers for combination therapy has been reported by several researchers to result in promising therapeutic outcomes in cancer treatment. Curcumin exhibits good anticancer activity but its poor bioavailability has resulted in its incorporation into several polymer-based nanocarriers resulting in good biological outcomes. Furthermore, the incorporation of curcumin together with other anticancer drugs have been reported to result in excellent therapeutic outcomes in vivo and in vitro. Due to the potential of polymer-based nanocarriers, this review article will be focused on the design of polymer-based nanocarriers loaded with curcumin together with other anticancer drugs.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 748 ◽  
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi237-vi238
Author(s):  
Miranda Montgomery ◽  
Abigail Zalenski ◽  
Amanda Deighen ◽  
Sherry Mortach ◽  
Treg Grubb ◽  
...  

Abstract Glioblastoma (GBM) has a particularly high rate of recurrence with a 5-year overall survival rate of approximately 5%. This is in part due to a sub-population of cancer stem cells (CSC), which are both radioresistant and chemotherapeutically resistant to conventional treatments. Here we investigated CBL0137, a small molecule form of curaxin, in combination with radiotherapy as a means to radiosensitize CSCs. CBL0137 sequesters FACT (facilitates chromatin transcription) complex to chromatin, which leads to activation of p53 and inhibition of NF-κB. This sequestering of FACT results in cytotoxicity especially within tumor cells and prevents FACT from performing its primary role as a histone chaperone, as well as inhibits its part in the DNA damage response pathway. We show that when combined with radiotherapy, CBL0137 administration limited the ability of CSCs to identify and repair damaged DNA. CSCs treated in vitro with CBL0137 and irradiation showed an increased inhibition of cancer cell growth and decreased viability compared to irradiation or drug alone. Combination therapy also showed more DNA damage in the CSCs than with either agent alone. Based on our in vitro evidence for the efficacy of combination therapy to target CSCs, we moved forward to test the treatment in vivo. Using a subcutaneous model, we show that the amount of CD133+ cells (a marker for GMB CSCs) was reduced in irradiation plus CBL0137 compared to either treatment alone. Survival studies demonstrated that irradiation plus CBL0137 compared to irradiation alone or CBL0137 alone increase lifespan. Here we show the ability of CBL0137, in combination with irradiation, to target patient GBM CSCs both in vitro and in vivo. This work establishes a new treatment paradigm for GBM that inclusively targets CSCs and may ultimately reduce tumor recurrence.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1212
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1821-1821
Author(s):  
Deepika Sharma Das ◽  
Arghya Ray ◽  
Yan Song ◽  
Paul Richardson ◽  
Mohit Trikha ◽  
...  

Abstract Introduction Proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity and drug resistance. A novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action, and effects on proteasomal activities (Chauhan et al., Cancer Cell 2005, 8:407-419). Pomalidomide is an analogue of thalidomide with potent immunomodulatory activity. Based on increased progression-free survival, pomalidomide has been approved by the FDA for the treatment of patients with RRMM who have received at least two prior therapies, including lenalidomide and bortezomib, and who showed disease progression on or within 60 days of completion of the most recent therapy. Here we utilized in vitro and in vivo models of MM to examine the anti-MM activity of combined marizomib and pomalidomide. Animal model studies examined the efficacy of marizomib (PO) using both single weekly and twice weekly schedule either alone or together with pomalidomide (PO). Methods Cell viability, and apoptosis were performed using WST/MTT, and Annexin V, respectively. Synergistic anti-MM activity was determined with CalcuSyn software program. Proteasome activity was measured, as in prior study (Chauhan et al., Cancer Cell 2005). MM.1S-tumor-bearing mice were treated with vehicle control, marizomib (PO) pomalidomide (PO), or marizomib plus pomalidomide at the indicated doses for 21 days on a twice-weekly or once weekly schedule for marizomib and 4 consecutive days weekly for pomalidomide. Statistical significance was determined using a Student's t test. Pomalidomide was purchased from Selleck chemicals; and marizomib was obtained from Triphase Accelerator, USA. Results MM cell lines (MM.1R, MM.1S, INA-6, RPMI-8226, LR5, Dox-40, bortezomib-sensitive ANBL6.WT, and bortezomib-resistant ANBL6.BR) and primary patient MM cells were pretreated with pomalidomide for 24h; marizomib was then added for an additional 24h, followed by measurement of cell viability. A significant decrease in viability of all cell lines was observed in response to treatment with combined low doses of marizomib and pomalidomide vs. either agent alone. Isobologram analysis confirmed the synergistic anti-MM activity of these agents (CI < 1.0). The cytotoxicity of combination therapy was observed in MM cell lines sensitive and resistant to novel therapies, and in p53-null ARP-1 MM cells. A significant decrease in cell viability of all patient MM cells was noted after combination therapy as compared to either compound alone (p < 0.05 for all patients). In contrast, combined low doses of marizomib plus pomalidomide did not significantly affect the viability of normal PBMCs, suggesting a favorable therapeutic index for this combination regimen. Tumor cells from 5 of 7 patients were obtained from patients whose disease was progressing while on bortezomib, dex, and lenalidomide therapies. Marizomib plus pomalidomide-induced apoptosis was associated with: 1) activation of caspase-8, caspase-9, caspase-3, and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, c-Myc, and Mcl-1; and 3) suppression of CT-L, C-L, and T-L proteasome activities. CRBN-siRNA attenuated marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibited the migration of MM cells and tumor-associated angiogenesis, and overcame cytoprotective effects of BM milieu. Human MM xenograft model study showed that combined low doses of marizomib (twice weekly; PO)) and pomalidomide (4 consecutive days weekly; PO) for 3 weeks were well tolerated, inhibited tumor growth, and prolonged survival. Importantly, combination of marizomib on once weekly (PO) schedule with pomalidomide (PO) was active and led to prolongation of survival. Finally, inhibition of CT-L (63%), T-L (40%) and C-L (29%) proteasome activity was observed in tumors from marizomib plus pomalidomide-treated mice vs. untreated mice. Conclusion Our preclinical data from in vitro studies and in vivo MM xenograftmodels demonstrate that oral marizomib plus pomalidomide trigger synergistic anti-MM activity, enhance proteasome inhibition, and overcome drug resistance. These studies support the continuation of clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. Disclosures Trikha: Triphase Accelerator Corporation: Employment. Chauhan:Stemline Therapeutics: Consultancy.


Author(s):  
Yi Sun ◽  
Lihua Tan ◽  
Zhaoqian Yao ◽  
Lujuan Gao ◽  
Ji Yang ◽  
...  

Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii201-ii202
Author(s):  
Miranda Tallman ◽  
Abigail Zalenski ◽  
Amanda Deighen ◽  
Morgan Schrock ◽  
Sherry Mortach ◽  
...  

Abstract Glioblastoma (GBM) is a malignant brain tumor with nearly universal recurrence. GBM cancer stem cells (CSCs), a subpopulation of radio- and chemo-resistant cancer cells capable of self-renewal, contribute to the high rate of recurrence. The anti-cancer agent, CBL0137, inhibits the FACT (facilitates chromatin transcription) complex leading to cancer cell specific cytotoxicity. Here, we show that CBL0137 sensitized GBM CSCs to radiotherapy using both in vitro and in vivo models. Treatment of CBL0137 combined with radiotherapy led to increased DNA damage in GBM patient specimens and failure to resolve the damage led to decreased cell viability. Using clonogenic assays, we confirmed that CBL0137 radiosensitized the CSCs. To validate that combination therapy impacted CSCs, we used an in vivo subcutaneous model and showed a decrease in the frequency of cancer stem cells present in tumors as well as decreased tumor volume. Using an orthotopic model of GBM, we confirmed that treatment with CBL0137 followed by radiotherapy led to significantly increased survival compared to either treatment alone. Radiotherapy remains a critical component of patient care for GBM, even though there exists a resistant subpopulation. Radio-sensitizing agents, including CBL0137, pose an exciting treatment paradigm to increase the efficacy of irradiation, especially by inclusively targeting CSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2021 ◽  
Vol 22 (9) ◽  
pp. 4390
Author(s):  
Jana Horváthová ◽  
Roman Moravčík ◽  
Miroslava Matúšková ◽  
Vladimír Šišovský ◽  
Andrej Boháč ◽  
...  

A high rate of glycolysis is considered a hallmark of tumor progression and is caused by overexpression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Therefore, we analyzed the possibility of inhibiting tumor and endothelial cell metabolism through the inhibition of PFKFB3 by a small molecule, (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15), as a promising therapy. The effects of PFK15 on cell proliferation and apoptosis were analyzed on human umbilical vein endothelial cells (HUVEC) and the human colorectal adenocarcinoma cell line DLD1 through cytotoxicity and proliferation assays, flow cytometry, and western blotting. The results showed that PFK15 inhibited the proliferation of both cell types and induced apoptosis with decreasing the Bcl-2/Bax ratio. On the basis of the results obtained from in vitro experiments, we performed a study on immunodeficient mice implanted with DLD1 cells. We found a reduced tumor mass after morning PFK15 treatment but not after evening treatment, suggesting circadian control of underlying processes. The reduction in tumor size was related to decreased expression of Ki-67, a marker of cell proliferation. We conclude that inhibition of glycolysis can represent a promising therapeutic strategy for cancer treatment and its efficiency is circadian dependent.


Sign in / Sign up

Export Citation Format

Share Document