scholarly journals 1-Laurin-3-Palmitin as a Novel Matrix of Solid Lipid Particles: Higher Loading Capacity of Thymol and Better Stability of Dispersions Than Those of Glyceryl Monostearate and Glyceryl Tripalmitate

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 489 ◽  
Author(s):  
Hao Shi ◽  
Shuangshuang Huang ◽  
Junbo He ◽  
Lijuan Han ◽  
Weinong Zhang ◽  
...  

To develop solid lipid nanoparticles (SLNs) with a new lipid matrix for delivery of hydrophobic bioactive molecules, high purity 1-laurin-3-palmitin (1,3-LP) was synthesized and the prepared 1,3-LP SLNs were compared with those of two common SLN matrices in glyceryl monostearate (GMS) and glyceryl tripalmitate (PPP). Conditions of preparing SLNs were first optimized by evaluating the particle size, polydispersity index (PDI), zeta-potential, and stability. Thereafter, the performance of SLN loading of a model compound in thymol was studied. The loading capacity of thymol in 1,3-LP SLNs was 16% of lipids and higher than 4% and 12% for GMS- and PPP-SLNs, respectively. The 1,3-LP SLNs also had the best efficiency to entrapment thymol during the prolonged storage. X-ray diffraction (XRD) analyses confirmed the excellent crystalline stability of 1,3-LP leading to the stable entrapment efficiency and better stability of thymol-loaded SLNs. Conversely, the polymorphic transformation of GMS and PPP resulted in the declined entrapment efficiency of thymol in the corresponding SLNs. This work indicated the 1,3-diacylglycerol (DAG) SLNs could be used as a promising delivery system for the encapsulation of hydrophobic bioactive molecules with high loading capacity and stability.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


2003 ◽  
Vol 807 ◽  
Author(s):  
T. Advocat ◽  
F. Jorion ◽  
T. Marcillat ◽  
G. Leturcq ◽  
X. Deschanels ◽  
...  

ABSTRACTZirconolite is a potential inorganic matrix that is currently investigated in France, in the framework of the 1991 radioactive waste management law, with a view to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of unrecyclable plutonium separated from other nuclear waste. To confirm the actinide loading capacity of the zirconolite calcium site and to study the physical and chemical stability of this type of ceramic when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide (isotope 239 or 238). The 55 pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Vandita Kakkar ◽  
Indu Pal Kaur

Sesamol loaded solid lipid nanoparticles (SSLNs) were prepared with the aim of minimizing its distribution to tissues and achieving its targeting to the brain. Three scale-up batches (100x1 L) of S-SLNs were prepared using a microemulsification technique and all parameters were statistically compared with the small batch (1x;10 mL). S-SLNs with a particle size of less than 106 nm with a spherical shape (transmission electron microscopy) were successfully prepared with a total drug content and entrapment efficiency of 94.26±2.71% and 72.57±5.20%, respectively. Differential scanning calorimetry and infrared spectroscopy confirmed the formation of lipidic nanoparticles while powder X-ray diffraction revealed their amorphous profile. S-SLNs were found to be stable for three months at 5±3°C in accordance with International Conference on Harmonisation guidelines. The SLN preparation process was successfully scaled-up to a 100x batch on a laboratory scale. The procedure was easy to perform and allowed reproducible SLN dispersions to be obtained.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hassan Ilyas ◽  
Ishtiaq A. Qazi ◽  
Wasim Asgar ◽  
M. Ali Awan ◽  
Zahir-ud-din Khan

Pure and Ag-TiO2nanoparticles were synthesized, with the metallic doping being done using the Liquid Impregnation (LI) method. The resulting nanoparticles were characterized by analytical methods such as scanning electron micrographs (SEMs), Energy Dispersive Spectroscopy (EDS), and X-ray diffraction (XRD). XRD analysis indicated that the crystallite size ofTiO2was 27 nm to 42 nm while the crystallite size of Ag-TiO2was 11.27 nm to 42.52 nm. The photocatalytic activity of pureTiO2and silver dopedTiO2was tested by photocatalytic degradation ofp-nitrophenol as a model compound. Ag-TiO2nanoparticles exhibited better results (98% degradation) as compared to pureTiO2nanoparticles (83% degradation) in 1 hour for the degradation ofp-nitrophenol. Ag-TiO2was further used for the photocatalytic degradation of 2,4-dichlorphenol (99% degradation), 2,5-dichlorophenol (98% degradation), and 2,4,6-trichlorophenol (96% degradation) in 1 hour. The degree of mineralization was tested by TOC experiment indicating that 2,4-DCP was completely mineralized, while 2,5-DCP was mineralized upto 95 percent and 2,4,6-TCP upto 86 percent within a period of 2 hours.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Rai Muhammad Sarfraz ◽  
Muhammad Rouf Akram ◽  
Muhammad Rizwan Ali ◽  
Asif Mahmood ◽  
Muhammad Usman Khan ◽  
...  

Current research work was carried out for gastro-protective delivery of naproxen sodium. Polyethylene glycol-g-poly (methacrylic acid) nanogels was developed through free radical polymerization technique. Formulation was characterized for swelling behaviour, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), and Thermal Gravimetric Analysis (TGA), Powder X-ray diffraction (PXRD), Zeta size distribution, and Zeta potential measurements, and in-vitro drug release. pH dependent swelling was observed with maximum drug release at higher pH. PXRD studies confirmed the conversion of loaded drug from crystalline to amorphous form while Zeta size measurement showed size reduction. On the basis of these results it was concluded that prepared nanogels proved an effective tool for gastro-protective delivery of naproxen sodium.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 463 ◽  
Author(s):  
Phunsuk Anantaworasakul ◽  
Wantida Chaiyana ◽  
Bozena B. Michniak-Kohn ◽  
Wandee Rungseevijitprapa ◽  
Chadarat Ampasavate

The aim of this study was to develop lipid-based nanoparticles that entrapped a high concentration of capsaicin (0.25%) from a capsicum oleoresin extract. The solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were strategically fabricated to entrap capsaicin without a hazardous solvent. Optimized nanosize lipid particles with high capsaicin entrapment and loading capacity were achieved from pair-wise comparison of the solid lipid mixtures consisting of fatty esters and fatty alcohols, representing small and large crystal-structure molecules combined with a compatible liquid lipid and surfactants (crystallinity index = 3%). This report was focused on selectively captured capsaicin from oleoresin in amorphous chili extract-loaded NLCs with 85.27% ± 0.12% entrapment efficiency (EE) and 8.53% ± 0.01% loading capacity (LC). The particle size, polydispersity index, and zeta potential of chili extract-loaded NLCs were 148.50 ± 2.94 nm, 0.12 ± 0.03, and −29.58 ± 1.37 mV, respectively. The favorable zero-order kinetics that prolonged capsaicin release and the significantly faster transdermal penetration of the NLC attributed to the reduction in skin irritation of the concentrated capsaicin NLCs, as illustrated by the in vitro EpiDermTM three-dimensional human skin irritation test and hen’s egg test chorioallantoic membrane assay (HET-CAM).


2014 ◽  
Vol 917 ◽  
pp. 115-122 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Mohd Shariff Azmi ◽  
T. Murugesan

A series of organic-inorganic hybrids were developed via intercalation process of primary, secondary and tertiary ammonium cations into different alkali and alkaline earth and transition metal cation forms of bentonite clay to be used as adsorbent materials for CO2capture under ambient temperature and slightly high pressure. The effect of the molar mass of amines on the structural characteristics, surface properties and CO2loading capacity of bentonite clay were investigated by X-ray diffraction, Brunauer-Emmett-Teller method and Magnetic Suspension Balance equipment, respectively. X-ray diffraction results revealed that the basal spacing of bentonite clay after modification with amines was increased with the molar mass of amine used, while BET results showed an inverse effect of the molar mass of amines on the surface area of the synthesized materials. The CO2loading capacity of the examined samples revealed that bentonite clay modified with monoethanolammonium cations retained higher CO2amount compared to those modified with di-and triethanolammonium cations. CO2adsorption isotherms on MEA+-Mg-MMT were conducted at 298, 323 and 348 K and different pressures. A decrease in CO2uptake with increasing temperature was observed, suggesting the exothermic nature of the adsorption process.


Author(s):  
Madhuri T Deshmukh ◽  
Shrinivas K Mohite

Objective: The objective of this research was to formulate and evaluate olanzapine (OLE) mucoadhesive microsphere prepared using carbopol and sodium combination. OLE having extensive hepatic first pass metabolism and low bioavailability problem, determined the need for the development of sustained release formulation.Methods: OLE mucoadhesive microspheres were prepared by ionic gelation method. OLE mucoadhesive microspheres were prepared byionic gelation method by using calcium chloride as crosslinking agent. The OLE mucoadhesive microsphere was characterized by particle sizemeasurement, process yield, morphology of microsphere, drug entrapment efficiency, mucoadhesion test, differential scanning calorimetry, powder X-ray diffraction, Fourier transforms infrared (FTIR) study and in-vitro drug release.Results: The OLE mucoadhesive microsphere having mean particle size ranged from 546.0 µm to 554.3 µm, and the entrapment efficiencies ranged from 73% to 96%. All the olanzapine (OLE) microsphere batches showed good in-vitro mucoadhesive property ranging from 75.89% to 96.47% and in the in-vitro wash off test ranging from 68.12% to 81.3%. FTIR studies indicated the no drug-polymer interactions in the ideal formulation F9. Therewere no compatibility issues, and the crystallinity of OLE was found to be reduced shoeing less intense peak in prepared mucoadhesive microspheres, which were confirmed by differential scanning calorimeter and X-ray diffraction studies. Among different formulations, the OLE microspheres of batch F9 had shown the optimum percent drug entrapment of microspheres. Release pattern of OLE from F9 microspheres batch followed Higuchi kinetic model. Stability studies were carried out for F9 formulation at 4°C/ambient, 25±2°C/60±5%, 40±2°C/75±5% relative humidity revealed that the drug entrapment, mucoadhesive behavior, and drug release were within permissible limits.Conclusion: The results obtained in this work demonstrate the use of carbopol and sodium alginate polymer for preparation of mucoadhesive microsphere.Keywords: Ionic gelation method, Gastroretentive delivery, Mucoadhesive microsphere, Carbopol.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ruiyu Wang ◽  
Fei Wang ◽  
Ling Liu

Activated carbon (AC) was modified by H2SO4 and used as a support for catalyst. The Fe2S3/AC-T catalyst was prepared by deposition-precipitation method and used to catalyze hydrocracking of coal-related model compound, di(1-naphthyl)methane (DNM). The properties of catalyst were studied by N2 adsorption-desorption, X-ray diffraction, and scanning electron microscopy. The result showed that ferric sulfate and acidic centers had synergetic effect on hydrocracking of DNM when using Fe2S3/AC-T as catalyst, the optimal loading of Fe is 9 wt.%. Hydroconversion of the extraction residue from Guizhou bituminous coal was also studied using Fe2S3/AC-T as the catalyst. The reaction was conducted in cyclohexane under 0.8 Mpa of initial hydrogen pressure at 310°C. The reaction mixture was extracted with petroleum ether and analyzed by GC/MS. Amounts of organic compounds which fall into the categories of homologues of benzene and naphthalene were detected. It suggested that the catalyst could effectively catalyze the cleavage of C-C-bridged bonds.


Sign in / Sign up

Export Citation Format

Share Document