scholarly journals Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1548 ◽  
Author(s):  
Kateřina Škrlová ◽  
Kateřina Malachová ◽  
Alexandra Muñoz-Bonilla ◽  
Dagmar Měřinská ◽  
Zuzana Rybková ◽  
...  

Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient’s body, which presents a number of complications and can also endanger the patient’s life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.

Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


2020 ◽  
Vol 20 (16) ◽  
pp. 1619-1632
Author(s):  
Katarzyna Pieklarz ◽  
Michał Tylman ◽  
Zofia Modrzejewska

The currently observed development of medical science results from the constant search for innovative solutions to improve the health and quality of life of patients. Particular attention is focused on the design of a new generation of materials with a high degree of biocompatibility and tolerance towards the immune system. In addition, apart from biotolerance, it is important to ensure appropriate mechanical and technological properties of materials intended for intra-body applications. Knowledge of the above parameters becomes the basis for considerations related to the possibilities of choosing the appropriate polymer materials. The researchers' interest, as evidenced by the number of available publications, is attracted by nanobiocomposites based on chitosan and carbon nanotubes, which, due to their properties, enable integration with the tissues of the human body. Nanosystems can be used in many areas of medicine. They constitute an excellent base for use as dressing materials, as they exhibit antimicrobial properties. In addition, they can be carriers of drugs and biological macromolecules and can be used in gene therapy, tissue engineering, and construction of biosensors. For this reason, potential application areas of chitosan-carbon nanotube nanocomposites in medical sciences are presented in this publication, considering the characteristics of the system components.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 345
Author(s):  
Daniele Valerini ◽  
Loredana Tammaro ◽  
Roberta Vitali ◽  
Gloria Guillot ◽  
Antonio Rinaldi

Porous scaffolds made of biocompatible and environmental-friendly polymer fibers with diameters in the nano/micro range can find applications in a wide variety of sectors, spanning from the biomedical field to textiles and so on. Their development has received a boost in the last decades thanks to advances in the production methods, such as the electrospinning technique. Conferring antimicrobial properties to these fibrous structures is a primary requirement for many of their applications, but the addition of antimicrobial agents by wet methods can present a series of drawbacks. In this work, strong antibacterial action is successfully provided to electrospun polycaprolactone (PCL) scaffolds by silver (Ag) addition through a simple and flexible way, namely the sputtering deposition of silver onto the PCL fibers. SEM-EDS analyses demonstrate that the polymer fibers get coated by Ag nanoparticles without undergoing any alteration of their morphological integrity upon the deposition process. The influence on wettability is evaluated with polar (water) and non-polar (diiodomethane) liquids, evidencing that this coating method allows preserving the hydrophobic character of the PCL polymer. Excellent antibacterial action (reduction > 99.995% in 4 h) is demonstrated against Escherichia coli. The easy fabrication of these PCL-Ag mats can be applicable to the production of biomedical devices, bioremediation and antifouling systems in filtration, personal protective equipment (PPE), food packaging materials, etc.


2021 ◽  
Vol 22 (5) ◽  
pp. 2497
Author(s):  
Filippo Prencipe ◽  
Anna Zanfardino ◽  
Michela Di Napoli ◽  
Filomena Rossi ◽  
Stefano D’Errico ◽  
...  

The evolution of antibacterial resistance has arisen as the main downside in fighting bacterial infections pushing researchers to develop novel, more potent and multimodal alternative drugs.Silver and its complexes have long been used as antimicrobial agents in medicine due to the lack of silver resistance and the effectiveness at low concentration as well as to their low toxicities compared to the most commonly used antibiotics. N-Heterocyclic Carbenes (NHCs) have been extensively employed to coordinate transition metals mainly for catalytic chemistry. However, more recently, NHC ligands have been applied as carrier molecules for metals in anticancer applications. In the present study we selected from literature two NHC-carbene based on acridinescaffoldand detailed nonclassicalpyrazole derived mono NHC-Ag neutral and bis NHC-Ag cationic complexes. Their inhibitor effect on bacterial strains Gram-negative and positivewas evaluated. Imidazolium NHC silver complex containing the acridine chromophore showed effectiveness at extremely low MIC values. Although pyrazole NHC silver complexes are less active than the acridine NHC-silver, they represent the first example of this class of compounds with antimicrobial properties. Moreover all complexesare not toxic and they show not significant activity againstmammalian cells (Hek lines) after 4 and 24 h. Based on our experimental evidence, we are confident that this promising class of complexes could represent a valuable starting point for developing candidates for the treatment of bacterial infections, delivering great effectiveness and avoiding the development of resistance mechanisms.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Silvia Matiacevich ◽  
Natalia Riquelme ◽  
María Lidia Herrera

Alginate from algal biomass is used as edible film and the incorporation of antimicrobial agents improves its performance to increase the shelf-life of fresh foods. However, environmental conditions and intrinsic properties of films influence their release. The aim of this study was to investigate the effect of the concentration and type of encapsulating agent and pH of emulsions on the physical and antimicrobial properties of alginate-carvacrol films. Films containing alginate, carvacrol as antimicrobial agent, and Tween 20 or trehalose (0.25 and 0.75% w/w) as encapsulating agents were obtained from suspensions at pH 4 and pH 8. Physical characterization of emulsions and films and antimicrobial properties (E. coliandB. cinerea) was evaluated. Results showed that droplets size depended on trehalose concentration, but emulsion stability depended on pH and type of encapsulating agent, being more stable samples with trehalose at pH 4. Although films with Tween 20 presented the highest opacity, they showed the best antimicrobial properties at initial time; however, during storage time, they lost their activity before samples with trehalose and relative humidity (RH) was the principal factor to influence their release. Therefore, sample formulated with 0.25% trehalose at pH 4 and stored at 75% RH had the best potential as edible film for fresh fruits.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2223
Author(s):  
Moises Bustamante-Torres ◽  
Victor H. Pino-Ramos ◽  
David Romero-Fierro ◽  
Sandra P. Hidalgo-Bonilla ◽  
Héctor Magaña ◽  
...  

The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.


1997 ◽  
Vol 60 (5) ◽  
pp. 505-509 ◽  
Author(s):  
K. JOHANNA BJORKROTH ◽  
HANNU J. KORKEALA

Spoilage characterized by bulging as a result of gas formation in bottled ketchup was studied, Samples produced microbial growth on MRS and Rogosa selective Lactobacillus agar. Seventy randomly selected isolates typed by using restriction endonuclease (ClaI, EcoRI, HindIII) analysis were found to have identical DNA fragment patterns in gel electrophoresis. The strain was identified as Lactobacillus fructivorans using morphological, physiological and biochemical characteristics, combined with the information obtained from ribotyping. Factors affecting growth and survival of this L. fructivorans strain in ketchup production were also studied. An L. fructivorans count of 105 CFU/g resulted in spoilage of inoculated ketchup samples. Spoilage occurred only in samples incubated at 15 to 30°C. The L. fructivorans implicated in causing spoilage demonstrated heat resistance with a D value of 1.2 min at 65°C. The strain did not show resistance to alkaline active chloride-containing detergent sanitizer; alkyldimethylbenzylammonium chloride and alkyldimethylethylbenzylammonium chloride-containing sanitizer were also found to be effective antimicrobial agents.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7031
Author(s):  
Alina Robu ◽  
Aurora Antoniac ◽  
Elena Grosu ◽  
Eugeniu Vasile ◽  
Anca Daniela Raiciu ◽  
...  

PMMA bone cements are mainly used to fix implanted prostheses and are introduced as a fluid mixture, which hardens over time. The problem of infected prosthesis could be solved due to the development of some new antibacterial bone cements. In this paper, we show the results obtained to develop four different modified PMMA bone cements by using antimicrobial additives, such as gentamicin, peppermint oil incorporated in hydroxyapatite, and silver nanoparticles incorporated in a ceramic glass matrix (2 and 4%). The structure and morphology of the modified bone cements were investigated by SEM and EDS. We perform experimental measurements on wettability, hydration degree, and degradation degree after immersion in simulated body fluid. The cytotoxicity was evaluated by MTT assay using the human MG-63 cell line. Antimicrobial properties were checked against standard strains Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The addition of antimicrobial agents did not significantly affect the hydration and degradation degree. In terms of biocompatibility assessed by the MTT test, all experimental PMMA bone cements are biocompatible. The performance of bone cements with peppermint essential oil and silver nanoparticles against these two pathogens suggests that these antibacterial additives look promising to be used in clinical practice against bacterial infection.


Sign in / Sign up

Export Citation Format

Share Document