scholarly journals Cannabidiol Application Increases Cutaneous Aquaporin-3 and Exerts a Skin Moisturizing Effect

2021 ◽  
Vol 14 (9) ◽  
pp. 879
Author(s):  
Nobutomo Ikarashi ◽  
Marina Shiseki ◽  
Ryotaro Yoshida ◽  
Keito Tabata ◽  
Rina Kimura ◽  
...  

Cannabidiol (CBD) is a major nonpsychotropic component of Cannabis sativa with various pharmacological activities. In this study, we investigated the skin moisturizing effect of CBD and its mechanism. A 1% CBD solution was applied daily to skin of HR-1 hairless (Seven-week-old, male) for 14 days. The dermal water content in CBD-treated mice was significantly increased compared to that in the control group. Furthermore, no inflammatory reaction in the skin and no obvious skin disorders were observed. The mRNA expression levels of loricrin, filaggrin, collagen, hyaluronic acid degrading enzyme, hyaluronic acid synthase, ceramide degrading enzyme, and ceramide synthase in the skin were not affected by the application of CBD. However, only aquaporin-3 (AQP3), a member of the aquaporin family, showed significantly higher levels in the CBD-treated group than in the control group at both the mRNA and protein levels. It was revealed that CBD has a moisturizing effect on the skin. In addition, it is possible that increased expression of AQP3, which plays an important role in skin water retention, is a contributor to the mechanism. CBD is expected to be developed in the future as a cosmetic material with a unique mechanism.

Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 633
Author(s):  
Huifan Liu ◽  
Sufen Li ◽  
Yuming Zhong ◽  
Jianliang Liu ◽  
Hui Liu ◽  
...  

In this study, the antioxidant components in co-culture of Chlorella pyrenoidosa and Yarrowia lipolytica (3:1 ratio) were confirmed as trypsin-hydrolyzed peptides (EHPs). The EHPs were composed of 836 different peptides with molecular weights ranging from 639 to 3531 Da and were mainly composed of hydrophobic amino acids (48.1%). These peptides showed remarkable protective effects against oxidative stress in HepG2, which may be attributed to their structures. Furthermore, the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly lower in the peptide-treated group than in the control group, suggesting that the antioxidant enzyme-coding genes were not activated. The EC50 value of three peptides in the EHPs were in the order of AGYSPIGFVR (0.04 ± 0.002 mg/mL) > VLDELTLAR (0.09 ± 0.001 mg/mL) > LFDPVYLFDQG (0.41 ± 0.03 mg/mL); these results agreed with the prediction of the model (R2 > 0.9, Q2 > 0.5). Thus, EHPs show potential as potent new antioxidant agents.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4601-4601
Author(s):  
Dongmei He ◽  
Yuan Zhang ◽  
Gexiu Liu

Abstract Bcl-2 is the prominent member of a family of proteins responsible for dysregulation of apoptosis, and resistance to chemotherapy. It has been shown that reduction in Bcl-2 protein levels could ultimately induce a lower apoptotic threshold and restore chemosensitivity in a variety of malignancies. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. In our lab, we have identified a siRNA targeting against Bcl-2 could effectively down-regulate Bcl-2 protein. In this study, we investigated the effect of gamma radiation combined with the siRNA targeting Bcl-2 on proliferation and apoptosis in B-lymphoma Raji cells. The siRNA was introduced into cells using Oligofectamine transfection. Cells were treated with Bcl-2 siRNA alone or with 2–8 Gy dose of (60)Co gamma rays. Expression of Bcl-2 mRNA and protein was assayed by quantitative reverse transcriptase-polymerase chain reaction and Western blotting analysis. Radiosensitivity was determined by clonogenic cell survival assay. Apoptosis was determined by Giemsa staining, Annexin-V binding assay and flow cytomertry. Furthermore caspase-3 activity and poly (ADP-ribose) polymerase (PARP) cleavage were evaluated. Transfection of Raji cells with 100 nmol/L siRNA targeted against Bcl-2 resulted in reduction of Bcl-2 mRNA by 75% compared with control-siRNA treated group and the vehicle control group(p<0.05). The levels of Bcl-2 protein were significantly reduced by 70% compared with the two control groups (p<0.05). There was significant difference in the radiosensitivity of Raji cells in which Bcl-2 was silenced compared with the cells transfected vehicle or control siRNA.Apoptosis index of the Raji cells treated with Bcl-2 siRNA combined with radiation was significantly increased (p<0.05), compared with either control siRNA / radiation combination or radiation-treatment cells alone, or Bcl-2 siRNA-treatment cells alone.Raji cells treated with Bcl-2 siRNA combined with radiation revealed enhanced caspase-3 and PARP cleavage as compared to Bcl-2 siRNA treated cells alone or only irradiated cells. These findings show that Bcl-2 siRNA synergistically enhances radiation-induced apoptosis through the expression of proteins involved in the programmed cell death.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xiu-Fang Ding ◽  
Xiao-Hua Zhao ◽  
Yang Tao ◽  
Wei-Chao Zhong ◽  
Qin Fan ◽  
...  

Most research focuses on the hypothalamic-pituitary-adrenal (HPA) axis, hypothalamus-pituitary-thyroid (HPT) axis, and hypothalamus-pituitary-gonadal (HPGA) axis systems of abnormalities of emotions and behaviors induced by stress, while no studies of Chinese herbal medicine such as Xiao Yao San (XYS) on the mechanisms of locus coeruleus-norepinephrine (LC-NE) system have been reported. Therefore, experiments were carried out to observe mechanism of LC-NE system in response to chronic immobilization stress (CIS) and explore the antidepressant effect of XYS. Rat model was established by CIS. LC morphology in rat was conducted. The serum norepinephrine (NE) concentrations and NE biosynthesis such as tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), and corticotrophin-releasing-factor (CRF) in LC were determined. Results showed that there were no discernible alterations in LC in rats. The serum NE concentrations, positive neurons, mean optical density (MOD), and protein levels of TH, DBH, and CRF in model group were significantly increased compared to the control group. But XYS-treated group displayed a significantly decreased in NE levels and expressions of TH, DBH, and CRF compared to the model group. In conclusion, CIS can activate LC-NE system to release NE and then result in a significant decrease in rats. XYS treatment can effectively improve depressive-like behaviors in rats through inhibition of LC-NE neurons activity.


2006 ◽  
Vol 75 (1) ◽  
pp. 85-89 ◽  
Author(s):  
H. Kotolová ◽  
P. Kollár ◽  
M. Jarošová

The aim of our experimental work was to study whether carvedilol is able to protect renal tissue from cyclosporine toxic effect in animal model of cyclosporine nephropathy. The study was performed on twenty Wistar rats divided in two experimental groups: control (treated with placebo) and carvedilol (treated with p.o. dose 10mg/kg/day in 1 ml solution). Cyclosporine in oral dose of 15 mg/kg/day was administered to all animals during 15 days of experiment. Urine was collected daily for the assessment of diuresis, proteinuria, and determination of urea and creatinine levels. Serum collected at the end of the experiment (day 15) was used for the determination of urea and transferrin levels. The level of renal tissue damage was evaluated by the Jones method for basal membranes, glomeruli and tubuli impregnation, and by the Kossa method for calcium impregnation. For the determination of paranuclear inclusions presence we used chromanilinblue (CAB) method. Statistically significant differences between total protein levels in urine on day 7 of the experiment and urea levels in serum at the end of the experiment in the control group and the carvedilol-treated group indicate a protective effect of carvedilol on renal tissue, which is supported also by the results of a histological examination of renal tissue. Significant increase in the serum transferrin level was registered in the carvedilol-treated group and no significant changes were noted in ceruloplasmin serum levels. In conclusion, our pilot study showed that carvedilol has the ability to protect renal tissue from cyclosporine induced nephropathy in rats.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3804-3804
Author(s):  
Jihane C Khalife ◽  
Hanna S Radomska ◽  
Jennifer Saultz ◽  
Ramasamy Santhanam ◽  
Xiaomeng Huang ◽  
...  

Abstract microRNA-155 (miR-155) is a short non-coding RNA that is associated with aggressive cancers and known to promote leukemogenesis. Recently, we have reported that aberrant miR-155 upregulation independently identifies high-risk cytogenetically normal AML patients, suggesting that this miR may also serve as a novel therapeutic target in AML. We and others have shown that miR-155 is positively regulated by NF-kB, a transcription factor that is constitutively activated in leukemic blasts and contributes to their aberrant proliferation and survival. MLN4924 (Millennium Pharmaceuticals Inc) is a novel drug that blocks neddylation and subsequent degradation of the NFkB inhibitor, IkBa, thereby inhibiting translocation of NF-kB to the nucleus. MLN4924 has demonstrated promising activity in early clinical trials for AML. We postulated that downregulation of miR-155 via NF-kB inhibition is at least in part responsible for the antileukemic activity of MLN4924. Methods AML cell lines and primary blasts were treated with 100-1000nM MLN4924 for 3-72 hrs. Messenger RNA and protein levels were determined by quantitative RT-PCR and immunoblotting, respectively. NF-kB activity was measured by luciferase reporter assays. Binding of NF-kB to the miR-155 promoter was detected by electromobility shift assay and Chromatin Immunoprecipitation. Transfection of miR-155 was performed using the siPORT TM NeoFXTM method. Apoptosis was assessed by Annexin V staining. For in vivo studies, we used NOD/SCID/g mice engrafted with MV4-11 cells. Two weeks after transplantation, the engrafted mice received intraperitoneal treatments of 180 mg/kg of MLN4924 every other day for 21 days. Mice in the control group were treated similarly with the vehicle alone (20% 2-hydroxypropyl-betacyclodextrin). Results In AML cell lines and primary AML patient blasts 12hr treatment with MLN4924 resulted in a ∼50% decrease of miR-155 expression at 300nM in THP-1 and MV4-11 cells and at 500nM in AML blasts (p<0.01). This was concomitant with a ∼ 50% and 70% decrease in NF-kB activity and binding to miR-155 promoter, respectively (p<0.01). These results correlated with a significant upregulation of mRNA levels of the key miR-155 target gene, SHIP1 [6-fold (p<0.05), 9-fold (p<0.01), and 2-fold (p<0.05) in THP-1 cells, MV4-11 cells, and AML patient blasts, respectively]. SHIP1 protein levels were increased in all samples as well. SHIP1 is a tyrosine phosphatase that blocks PI3K-mediated membrane localization of AKT, which is often aberrantly activated in human cancers, including leukemia. Thus, we postulated that MLN4924-induced upregulation of SHIP1 via miR-155 downregulation would also result in PI3K/AKT pathway inhibition. As predicted, MLN4924 treatment of AML cell lines and primary blasts resulted in inhibition of the active AKT, as evidenced by a decline of phospho-AKTThr308 levels. Furthermore, the pharmacologic activity of MLN4924 was inhibited by forced expression of miR-155 in THP-1 cells and AML blasts, as shown by a partial loss of SHIP1 upregulation and caspase-3 activation, thus preventing MLN4924-triggered induction of apoptosis (p<0.01) and decrease in cell viability (p<0.05). In vivo, mature miR-155 levels in the peripheral blood of xenografted mice decreased by 50% after 24hrs and 80% after 48hrs (p<0.01) from the first dose of MLN4924. Moreover, 21 days from the start of MLN4924 treatment, the average white blood cell count was significantly lower in the MLN4924-treated group (5,333 cells/ul ± 1040) compared with the vehicle-treated group (36,166 cells/ul ± 10,598; p< 0.01). The average spleen weight was also dramatically reduced in the MLN4924-treated group (58.06 mg ±12.74) compared with the control group (305.66 mg ±51.1; p<0.01). Importantly, MLN4924 significantly prolonged the survival of leukemic mice; median survival was 45.5 vs. 31 days for MLN4924-treated vs. control groups (p<0.0001, n=10 per group), respectively. Conclusions We showed that MLN4924 treatment of AML cells in vitro and in vivo resulted in decreased miR-155 expression, reactivation of its target gene, SHIP1, and concomitant inhibition of PI3K/AKT pathway. Our data also support that miR-155 downregulation is a critical component of MLN4924’s antileukemic activity. Thus, our work provides novel insight into MLN4924’s mechanism of action and the rationale for combining this drug with emerging anti-microRNA compounds. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Corsetti ◽  
Simona Borruso ◽  
Livia Malandrucco ◽  
Valentina Spallucci ◽  
Laura Maragliano ◽  
...  

AbstractAmong the phytocomplex components of Cannabis sativa L., cannabidiol (CBD) has a recognised therapeutic effect on chronic pain. Little is known about the veterinary use of CBD in dogs. Even less is known on the effects of CBD on dog behaviour, especially in shelters. The purpose of this study was to determine if CBD affects stress related behaviour in shelter dogs. The sample consisted of 24 dogs divided into two groups that were created by assigning the dogs alternately: 12 dogs were assigned to the treatment group and 12 to the control group. Extra virgin olive oil, titrated to 5% in CBD was given to treated group; the placebo consisted of olive oil only, dispensed daily for 45 days. Behavioural data were collected using the ‘focal animal’ sampling method with ‘all occurrences’ and ‘1/0’ methods for 3 h: before (T0), after 15 days (T1), after 45 days of treatment (T2) and after 15 days from the end of the treatment (T3). Treated dogs showed reduced aggressive behaviour toward humans following the treatment (Friedman Test: χ2 = 13.300; df = 3; N = 12; p = .004; adj. sig. p = 0.027), but the difference in the decrease of aggressive behaviour between the two groups was not significant (Mann–Whitney U test, T2–T0: Z = − 1.81; N = 24; p = 0.078). Other behaviours indicative of stress, such as displacing activities and stereotypes, did not decrease. Despite some non-significant results, our findings suggest that it is worth doing more research to further investigate the effect of CBD on dog behaviour; this would be certainly valuable because the potential for improving the welfare of dogs in shelters is priceless.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 477-477
Author(s):  
Sanique South ◽  
Keith Crabtree ◽  
Parakat Vijayagopal ◽  
Dayna Averitt ◽  
Shanil Juma

Abstract Objectives The purpose of this study was to examine the dose-dependent effects of whole blueberry in a monosodium iodoacetate (MIA) induced rat model of Osteoarthritis (OA). There is no known cure for OA and the present pharmacological treatment options are limited and associated with adverse side effects. We hypothesize that the addition of whole blueberry into the diets of rats with MIA induced OA will reduce pain behavior and improve cartilage health. Methods A total of forty, 45-day-old female CD rats were used for this study. Thirty rats were injected with MIA to induce joint destruction associated with OA. Ten rats served as control without induction of joint destruction. The MIA induced rats were randomized into three groups consisting of 10 animals. All groups were fed a casein-based diet with two of the MIA induced groups receiving an addition of whole blueberry powder at 5% and 10%, respectively. All groups were fed the respective diets for 46 days. The animals were weighted weekly throughout the study period and food intake monitored and recorded. Fasted blood specimens and other tissues of interest were collected after euthanasia for analysis. Mechanical allodynia was assessed at four time points throughout the study to evaluate changes in pain behaviors. Results There were no difference in body weight between the four groups at baseline. After 46 days of feeding there was no significant change in body weight in either of the blueberry fed groups in comparison to the MIA rats. Plasma hyaluronic acid levels were higher in the MIA group in comparison to the blueberry treated groups. We observed a dose dependent decrease in hyaluronic acid levels with blueberry treatment, respectively. At baseline, the MIA group exhibited significant (P ≤ 0.05) mechanical allodynia compared to the control group. Mechanical allodynia was significantly (P ≤ 0.05) reduced after 40 days in the 10% whole blueberry treated group. Conclusions Incorporation of whole blueberry into the diets of rats with MIA-induced OA reduced hyaluronic acid concentration and pain sensitivity. These results suggest that whole blueberry may be an effective therapeutic alternative for improving joint health and alleviating pain associated with OA. Funding Sources Research Enhancement Program, Texas Woman's University.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


1981 ◽  
Vol 45 (03) ◽  
pp. 276-281 ◽  
Author(s):  
S Ishimaru ◽  
E Berglin ◽  
H-A Hansson ◽  
A-C Teger-Nilsson ◽  
G William-Olsson

SummaryA segment of the inferior vena cava was replaced by an expanded polytetrafluoroethylene graft in 13 dogs. Five of them served as a control group, while the other 8 were moderately or severely defibrinogenated with subcutaneous batroxobin. Plasma fibrinogen decreased to extremely low values throughout the experiment in the defibrinogenated dogs except in the moderately treated group in which it temporarily rose to 0.72-0.87 g/1 on the first postoperative day.Scanning electron microscopic observations of the haemostatic clot formed at the anastomoses of the graft revealed no significant morphological differences in platelet adhesion and/or aggregation between the three groups. These findings confirmed that platelets play a key role in primary haemostasis during defibrinogenation.The fibrin network was slightly diminished and only short fibrin filaments could be seen in the moderately and severely defibrinogenated groups respectively. These differences in composition of the clots are discussed in relation to their haemostatic capacity.


Sign in / Sign up

Export Citation Format

Share Document