scholarly journals Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives

2021 ◽  
Vol 14 (12) ◽  
pp. 1272
Author(s):  
Eugenia Quiros-Roldan ◽  
Silvia Amadasi ◽  
Isabella Zanella ◽  
Melania Degli Antoni ◽  
Samuele Storti ◽  
...  

Monoclonal antibodies (mAbs) have been known since the 1970s. However, their therapeutic potential in the medical field has recently emerged, with the advancement of manufacturing techniques. Initially exploited mainly in the oncology field, mAbs have become increasingly relevant in Infectious Diseases. Numerous mAbs have been developed against SARS-CoV 2 and have proven their effectiveness, especially in the management of the mild-to-moderate disease. In this review, we describe the monoclonal antibodies currently authorized for the treatment of the coronavirus disease 19 (COVID-19) and offer an insight into the clinical trials that led to their approval. We discuss the mechanisms of action and methods of administration as well as the prophylactic and therapeutic labelled indications (both in outpatient and hospital settings). Furthermore, we address the critical issues regarding mAbs, focusing on their effectiveness against the variants of concern (VoC) and their role now that a large part of the population has been vaccinated. The purpose is to offer the clinician an up-to-date overview of a therapeutic tool that could prove decisive in treating patients at high risk of progression to severe disease.

2021 ◽  
Vol 14 (8) ◽  
pp. e243469
Author(s):  
Carlos X Rabascall ◽  
Becky X Lou ◽  
Brianne Navetta-Modrov ◽  
Stella S Hahn

As we are over a year into the COVID-19 pandemic, we have made many forward strides in therapeutics. These treatments, such as monoclonal antibodies, have help mitigate the detrimental and often fatal consequences of COVID-19. The current indication for the use of monoclonal antibodies is mild to moderate COVID-19 infection within 10 days of symptom onset in those who are at high risk of progression to severe disease. However, their role in patients with prolonged symptoms is not clear. We present a unique case of monoclonal antibodies use after 54 days of symptom onset in an immunosuppressed patient with persistent COVID-19 infection despite standard treatment. This case illustrates the potential use of monoclonal antibodies outside of the current recommended therapeutic window in immunosuppressed patients, who may have difficulty with viral clearance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Simona Granata ◽  
Pierluigi Carratù ◽  
Giovanni Stallone ◽  
Gianluigi Zaza

Kidney transplant recipients are at high risk of developing severe COVID-19 due to the coexistence of several transplant-related comorbidities (e.g., cardiovascular disease, diabetes) and chronic immunosuppression. As a consequence, a large part of SARS-CoV-2 infected patients have been managed with a reduction of immunosuppression. The mTOR-I, together with antimetabolites, have been often discontinued in order to minimize the risk of pulmonary toxicity and to antagonize pharmacological interaction with antiviral/anti-inflammatory drugs. However, at our opinion, this therapeutic strategy, although justified in kidney transplant recipients with severe COVID-19, should be carefully evaluated in asymptomatic/paucisymptomatic patients in order to avoid the onset of acute allograft rejections, to potentially exploit the mTOR-I antiviral properties, to reduce proliferation of conventional T lymphocytes (which could mitigate the cytokine storm) and to preserve Treg growth/activity which could reduce the risk of progression to severe disease. In this review, we discuss the current literature regarding the therapeutic potential of mTOR-Is in kidney transplant recipients with COVID-19 with a focus on pulmonary fibrosis.


2020 ◽  
Author(s):  
Ágata Nogueira D’Áurea Moura ◽  
Diane Sthefany Lima de Oliveira ◽  
Verenice Paredes ◽  
Letícia Barboza Rocha ◽  
Arturo Casadevall ◽  
...  

AbstractParacoccidioidomycosis (PCM) is one of the most frequent systemic mycoses in Latin America. It affects mainly male rural workers in impoverished regions, and the therapy can last up to two years or use drugs that are very toxic. Given the need for novel safe and effective approaches to treat PCM, we have been developing monoclonal antibodies (mAbs) that could be used not only to block specific fungal targets, but also modulate the host’s antifungal immunity. In this work we show the generation of and promising results with a mAb against HSP90, a molecular chaperone that is an important virulence factor in fungi. Using recombinant Paracoccidioides lutzii (Pb01) and P. brasiliensis (Pb18) HSP90 proteins produced in E. coli, we immunized mice and generated polyclonal antibodies and an IgG1 hybridoma mAb. The proteins were very immunogenic and both the polyclonal serum and mAb were used in immunofluorescence experiments, which showed binding of antibodies to the yeast cell surface. The mAb successfully opsonized P. lutzii and P. brasiliensis cells in co-incubations with J774.16 macrophage-like cells. Our results suggest that this mAb could serve as the basis for new immunotherapy regimens for PCM.Author summaryParacoccidioidomycosis (PCM) is a severe disease caused by fungi, common in Latin America. It is treatable, but some of the drugs that are available are very toxic or not very effective, and the treatment can take as long as two years to clear the infection. To address the need for improved therapeutic alternatives, we have been developing drug candidates based on antibody technologies against Paracoccidioides brasiliensis and P. lutzii, which cause PCM. In this work, we produced monoclonal antibodies (mAbs) that bind to the fungal protein HSP90, which is essential for fungal cells to survive. One mAb, 4D11, recognized the HSP90 target on the surface of fungal cells. These antibody-covered cells were ingested more efficiently by immune cells called macrophages, suggesting they could improve the host resistance to infection by Paracoccidioides. Future improvements on these antibodies could thus lead to more effective and safer PCM treatments.


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 359-370
Author(s):  
Dr. Ravi S. Dalawai

Indian population is in growing trend from 942.2 million in 1994 to 1.36 billion in 2019.Among this six per cent of India's population was of the age 65 and above (UNFPA, 2019). Today the work culture is totally changed. Both husband and wife are forced to work in the current scenario and unable to take care of their parents. The changing structure created increased problems for old age people leads to loneliness, psychological, physical health and financial insecurity. The study paper provides insight into the social and demographic factor and health related sickness of the oldest people. This research explained the cross-sectional study included a representative sample (n=116) of adults aged ≥60 years. The sample was chosen using a four-stage stratified random-cluster survey sampling method .The Chi Square test and ANOVA test was analyzed using SPSS20.


2020 ◽  
Vol 3 (4) ◽  
pp. 285-299
Author(s):  
Yang Huang ◽  
Hui Sun ◽  
Hai Yu ◽  
Shaowei Li ◽  
Qingbing Zheng ◽  
...  

Abstract The rapid emergence of Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) as a pandemic that presents an urgent human health crisis. Many SARS-CoV-2 neutralizing antibodies (NAbs) were developed with efficient therapeutic potential. NAbs-based therapeutics against SARS-CoV-2 are being expedited to preclinical and clinical studies with two antibody drugs, LY3819253 (LY-CoV555) and REGN-COV2 (REGN10933 and REGN10987), approved by the US Food and Drug Administration for emergency use authorization for treating COVID-19. In this review, we provide a systemic overview of SARS-CoV-2 specific or cross-reactive NAbs and discuss their structures, functions and neutralization mechanisms. We provide insight into how these NAbs specific recognize the spike protein of SARS-CoV-2 or cross-react to other CoVs. We also summarize the challenges of NAbs therapeutics such as antibody-dependent enhancement and viral escape mutations. Such evidence is urgently needed to the development of antibody therapeutic interventions that are likely required to reduce the global burden of COVID-19.


2021 ◽  
Vol 22 (14) ◽  
pp. 7481
Author(s):  
Pier-Angelo Tovo ◽  
Silvia Garazzino ◽  
Valentina Daprà ◽  
Giulia Pruccoli ◽  
Cristina Calvi ◽  
...  

Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. RIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children nd in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19-infected children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Xiaoyu Pu ◽  
Siyang Ma ◽  
Yan Gao ◽  
Tiankai Xu ◽  
Pengyu Chang ◽  
...  

Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.


Author(s):  
Giuseppe Lippi ◽  
Andrew M South ◽  
Brandon Michael Henry

Background Early studies have reported various electrolyte abnormalities at admission in patients who progress to the severe form of coronavirus disease 2019 (COVID-19). As electrolyte imbalance may not only impact patient care, but provide insight into the pathophysiology of COVID-19, we aimed to analyse all early data reported on electrolytes in COVID-19 patients with and without severe form. Methods An electronic search of Medline (PubMed interface), Scopus and Web of Science was performed for articles comparing electrolytes (sodium, potassium, chloride and calcium) between COVID-19 patients with and without severe disease. A pooled analysis was performed to estimate the weighted mean difference (WMD) with 95% confidence interval. Results Five studies with a total sample size of 1415 COVID-19 patients. Sodium was significantly lower in patients with severe COVID-19 (WMD: –0.91 mmol/L [95% CI: –1.33 to –0.50 mmol/L]). Similarly, potassium was also significantly lower in COVID-19 patients with severe disease (WMD: –0.12 mmol/L [95% CI: –0.18 to –0.07 mmol/L], I2=33%). For chloride, no statistical differences were observed between patients with severe and non-severe COVID-19 (WMD: 0.30 mmol/L [95% CI: –0.41 to 1.01 mmol/L]). For calcium, a statistically significant lower concentration was noted in patients with severe COVID-19 (WMD: –0.20 mmol/L [95% CI: –0.25 to –0.20 mmol/L]). Conclusions This pooled analysis confirms that COVID-19 severity is associated with lower serum concentrations of sodium, potassium and calcium. We recommend electrolytes be measured at initial presentation and serially monitored during hospitalization in order to establish timely and appropriate corrective actions.


Sign in / Sign up

Export Citation Format

Share Document