scholarly journals Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 131
Author(s):  
Giulia Marino ◽  
Alessio Scalisi ◽  
Paula Guzmán-Delgado ◽  
Tiziano Caruso ◽  
Francesco Paolo Marra ◽  
...  

A comprehensive characterization of water stress is needed for the development of automated irrigation protocols aiming to increase olive orchard environmental and economical sustainability. The main aim of this study is to determine whether a combination of continuous leaf turgor, fruit growth, and sap flow responses improves the detection of mild water stress in two olive cultivars characterized by different responses to water stress. The sensitivity of the tested indicators to mild stress depended on the main mechanisms that each cultivar uses to cope with water deficit. One cultivar showed pronounced day to day changes in leaf turgor and fruit relative growth rate in response to water withholding. The other cultivar reduced daily sap flows and showed a pronounced tendency to reach very low values of leaf turgor. Based on these responses, the sensitivity of the selected indicators is discussed in relation to drought response mechanisms, such as stomatal closure, osmotic adjustment, and tissue elasticity. The analysis of the daily dynamics of the monitored parameters highlights the limitation of using non-continuous measurements in drought stress studies, suggesting that the time of the day when data is collected has a great influence on the results and consequent interpretations, particularly when different genotypes are compared. Overall, the results highlight the need to tailor plant-based water management protocols on genotype-specific physiological responses to water deficit and encourage the use of combinations of plant-based continuously monitoring sensors to establish a solid base for irrigation management.

2003 ◽  
Vol 54 (1) ◽  
pp. 67 ◽  
Author(s):  
R. A. Stephenson ◽  
E. C. Gallagher ◽  
V. J. Doogan

Mild water stress was imposed on bearing macadamia trees in through-draining lysimeters at various phenological stages. Water was withheld until a xylem water potential (Ψx) of –1.5 to 2.0 MPa was reached, this being maintained by partial water replenishment at 2-day intervals. Flowering, nut set, nut development, yield, and quality responses were assessed to identify critical, stress-sensitive stages. Stress during nut maturation was particularly detrimental to both yield and quality, although stress during floral development and the premature nut drop also had adverse effects. Low yields were due to reduced nut number and smaller nuts. Lower photosynthesis (c. 2 μmol CO2/m2.s) at –1.5 MPa would account for reduced yield and poorer quality during nut maturation when energy demands of active oil accumulation are high. Stress at floral initiation was generally not detrimental.Overall, stress restricted growth. The rate of girth growth was significantly lower when stress was applied during the dormant floral initiation stage. When stress coincided with normal periods of vegetative growth, flushing was delayed until after re-watering when greater foliage production was stimulated. Judiciously imposing mild stress may be used to manipulate macadamia phenology, although it may not necessarily conserve water. Further refinement would be needed to develop stress manipulation as a practical and reliable management tool to achieve higher yields. Water should be applied to alleviate stress during critical stages of nut development and maturation. Mild stress after the current crop is mature, however, is unlikely to be detrimental to macadamia yield or quality. It may, in fact, be beneficial through manipulation of flushing patterns that influence yield.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 173 ◽  
Author(s):  
Angie L. Gámez ◽  
David Soba ◽  
Ángel M. Zamarreño ◽  
José M. García-Mina ◽  
Iker Aranjuelo ◽  
...  

The total area under quinoa (Chenopodium quinoa Willd.) cultivation and the consumption of its grain have increased in recent years because of its nutritional properties and ability to grow under adverse conditions, such as drought. Climate change scenarios predict extended periods of drought and this has emphasized the need for new crops that are tolerant to these conditions. The main goal of this work was to evaluate crop yield and quality parameters and to characterize the physiology of two varieties of quinoa grown under water deficit in greenhouse conditions. Two varieties of quinoa from the Chilean coast (Rainbow) and altiplano (Illpa) were used, grown under full irrigation or two different levels of water deficit applied during the grain filling period. There were no marked differences in yield and quality parameters between treatments, but the root biomass was higher in plants grown under severe water deficit conditions compared to control. Photosynthesis, transpiration and stomatal conductance decreased with increased water stress in both cultivars, but the coastal variety showed higher water use efficiency and less discrimination of 13C under water deficit. This response was associated with greater root development and a better stomatal opening adjustment, especially in the case of Rainbow. The capacity of Rainbow to increase its osmoregulant content (compounds such as proline, glutamine, glutamate, K and Na) could enable a potential osmotic adjustment in this variety. Moreover, the lower stomatal opening and transpiration rates were also associated with higher leaf ABA concentration values detected in Rainbow. We found negative logarithmic relationships between stomatal conductance and leaf ABA concentration in both varieties, with significant R2 values of 0.50 and 0.22 in Rainbow and Illpa, respectively. These moderate-to-medium values suggest that, in addition to ABA signaling, other causes for stomatal closure in quinoa under drought such as hydraulic regulation may play a role. In conclusion, this work showed that two quinoa cultivars use different strategies in the face of water deficit stress, and these prevent decreases in grain yield and quality under drought conditions.


1998 ◽  
Vol 25 (2) ◽  
pp. 253 ◽  
Author(s):  
Y.-C. Du ◽  
A. Nose ◽  
K. Wasano ◽  
Y. Uchida

During a slowly induced water stress, almost all measured activities of enzymes, including the important enzymes associated with the Calvin cycle, the C4 pathway, and sucrose and starch synthesis, and the pool sizes of metabolites, including hexose phosphates, 3-phosphoglycerate, triose phosphates, malate, pyruvate and PEP, in leaves of sugarcane (Saccharum sp. cv. NiF4) were not or only moderately reduced by mild water stress (above –0.9 MPa leaf water potential (Ψw)), and the magnitudes of reductions in those parameters were less than the reductions in photosynthetic rates. We conclude that the biochemical processes of sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane leaves were not seriously affected by mild water stress, and the changes in those processes were not the cause for the decline in photosynthesis; mild water stress induced decline in photosynthesis is caused by stomatal closure. Under severe water stress (–1.2 MPa leaf Ψw), most metabolite levels and enzyme activities decreased significantly compared with those under mild water stress. But the enzyme activities and metabolite levels relating to sucrose and starch synthesis, and the Calvin cycle still remained at high levels compared with the corresponding photosynthetic rate. PPDK activity and pyruvate content decreased to very low levels. It is suggested that PPDK is a possible limiting enzyme for photosynthesis in leaves of sugarcane under severe water stress.


2020 ◽  
Vol 12 (10) ◽  
pp. 3945 ◽  
Author(s):  
Ved Parkash ◽  
Sukhbir Singh

Area under vegetable cultivation is expanding in arid and semi-arid regions of the world to meet the nutritional requirements of an ever-growing population. However, water scarcity in these areas is limiting vegetable productivity. New water-conserving irrigation management practices are being implemented in these areas. Under these irrigation management practices, crops are frequently exposed to some extent of water stress. Vegetables are highly sensitive to water stress. For the successful implementation of new irrigation practices in vegetable crops, it is of immense importance to determine the threshold water deficit level which will not have a detrimental effect on plant growth and yield. Along with this, plant response and adaptation mechanisms to new irrigation practices need to be understood for the successful implementation of new irrigation practices. To understand this, water stress indicators that are highly responsive to water stress; and that can help in early detection of water stress need to be identified for vegetable crops. Plant-based water stress indicators are quite effective in determining the water stress level in plants because they take into account the cumulative effect of water stress due to declining soil moisture status and increased evaporative demand of the atmosphere while determining the water stress level in plant. Water stress quantification using plant-based approaches involves direct measurements of several aspects of plant water status and indirect measurements of plant processes which are highly sensitive to water deficit. In this article, a number of plant-based water stress indicators were critically reviewed for (1) their efficacy to determine the level of water stress, (2) their potential to predict the yield of a crop as affected by different water-deficit levels and (3) their suitability for irrigation scheduling in vegetable crops.


2018 ◽  
Vol 20 (2) ◽  
pp. 11-16
Author(s):  
JA Adjetey ◽  
BNG Nxumalo

The study was conducted at the University of KwaZulu-Natal (29o37’ S, 30o23’ E) from May to November 2012 under controlled environment conditions with three water regimes namely: well watered controls, mild water stress to -1.4 MPa and severe water stress to -2.0 MPa, at the V4 (28 DAS) and V5 stages (35 DAS). Severe stress significantly reduced no. of nodule and root mass, leaf area, shoot dry mass and uptake, regardless of the stage. Mild stress on the other hand had little effect on this parameter as plants recovered on re-watering, to attain values similar to the control treatments. The V4 and V5 stages can recover from mild stress, but severe stress at both growth stages reduces nodulation and nitrogen uptake and this can lead to reduction in production potential of soybean.Bangladesh Agron. J. 2017, 20(2): 11-16


2012 ◽  
Vol 63 (1) ◽  
pp. 33 ◽  
Author(s):  
V. O. Sadras ◽  
L. Lake ◽  
K. Chenu ◽  
L. S. McMurray ◽  
A. Leonforte

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below ~7°C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25°C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957–2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.


OENO One ◽  
2000 ◽  
Vol 34 (2) ◽  
pp. 41
Author(s):  
Cornelis Van Leeuwen ◽  
Olivier Lerich ◽  
Romain Renard ◽  
Olivier Trégoat ◽  
Pierre-Luc Alla

<p style="text-align: justify;">Continuous measurement of micro variations in the diameter of woody organs provides an early detection of mild water deficits in field grown vines. Trunk diameter variations gives more reliable data than cane diameter variations. Water deficit induces trunk shrinkage and increases the Daily Contraction Amplitude / Potential Evapo Transpiration ratio ( DCA / PET). This does not occur on irrigated control vines. Moreover, micromorphometry appears to be an accurate technique for detecting short-term water deficits, because the measurements are continuous. Major constraints in the use of micromorphometry on field grown vines include the positioning of sensor needles on the trunk and the need to maintain fragile equipment permanently in the vineyard. Additionally, this method does not quantify water deficits.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Mayra Andreina Osorio Zambrano ◽  
Darwin Alexander Castillo ◽  
Loyla Rodríguez Pérez ◽  
Wilson Terán

The increase in events associated with drought constraints plant growth and crop performance. Cacao (Theobroma cacao L.) is sensitive to water deficit stress (DS), which limits productivity. The aim of this research was to characterise the response of seven (CCN51, FEAR5, ICS1, ICS60, ICS95, EET8, and TSH565) commercially important cacao clones to severe and temporal water deficit stress. Ten-month-old cacao trees were submitted to two treatments: well-watered and water-stressed until the leaf water potential (Ψleaf) reached values between −3.0 and −3.5 MPa. The effects of hydric stress on water relations, gas exchange, photochemical activity, membrane integrity and oxidative stress-related gene expression were evaluated. All clones showed decreases in Ψleaf, but TSH565 had a higher capacity to maintain water homeostasis in leaves. An initial response phase consisted of stomatal closure, a general mechanism to limit water loss: as a consequence, the photosynthetic rate dropped by approximately 98% on average. In some clones, the photosynthetic rate reached negative values at the maximum stress level, evidencing photorespiration and was confirmed by increased intracellular CO2. A second and photosynthetically limited phase was characterized by a drop in PSII quantum efficiency, which affected all clones. On average, all clones were able to recover after 4 days of rewatering. Water deficit triggered oxidative stress at the early phase, as evidenced by the upregulation of oxidative stress markers and genes encoding ROS scavenging enzymes. The effects of water deficit stress on energy metabolism were deduced given the upregulation of fermentative enzyme-coding genes. Altogether, our results suggest that the EET8 clone was the highest performing under water deficit while the ICS-60 clone was more susceptible to water stress. Importantly, the activation of the antioxidant system and PSII repair mechanism seem to play key roles in the observed differences in tolerance to water deficit stress among clones.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Davie Mayeso Kadyampakeni ◽  
Kelly T. Morgan ◽  
Mongi Zekri ◽  
Rhuanito Ferrarezi ◽  
Arnold Schumann ◽  
...  

Water is a limiting factor in Florida citrus production during the majority of the year because of the low water holding capacity of sandy soils resulting from low clay and the non-uniform distribution of the rainfall. In Florida, the major portion of rainfall comes in June through September. However, rainfall is scarce during the dry period from February through May, which coincides with the critical stages of bloom, leaf expansion, fruit set, and fruit enlargement. Irrigation is practiced to provide water when rainfall is not sufficient or timely to meet water needs. Proper irrigation scheduling is the application of water to crops only when needed and only in the amounts needed; that is, determining when to irrigate and how much water to apply. With proper irrigation scheduling, yield will not be limited by water stress. With citrus greening (HLB), irrigation scheduling is becoming more important and critical and growers cannot afford water stress or water excess. Any degree of water stress or imbalance can produce a deleterious change in physiological activity of growth and production of citrus trees.  The number of fruit, fruit size, and tree canopy are reduced and premature fruit drop is increased with water stress.  Extension growth in shoots and roots and leaf expansion are all negatively impacted by water stress. Other benefits of proper irrigation scheduling include reduced loss of nutrients from leaching as a result of excess water applications and reduced pollution of groundwater or surface waters from the leaching of nutrients. Recent studies have shown that for HLB-affected trees, irrigation frequency should increase and irrigation amounts should decrease to minimize water stress from drought stress or water excess, while ensuring optimal water availability in the rootzone at all times.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


Sign in / Sign up

Export Citation Format

Share Document