scholarly journals Growth and Element Uptake by Salt-Sensitive Crops under Combined NaCl and Cd Stresses

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1202
Author(s):  
Gabrijel Ondrasek ◽  
Zed Rengel ◽  
Nada Maurović ◽  
Nada Kondres ◽  
Vilim Filipović ◽  
...  

To test an assumption that organic soil can ameliorate nutritional disorders associated with metal and salinity stresses, we exposed salt-sensitive strawberry and lettuce to four salinity (0–60 mM NaCl) and three contamination (0.3–5 mg Cd/kg) rates in peat (pHH2O = 5.5). The results showed that, even at 20 mM NaCl, salinity stress exerted a dominant effect on rhizosphere biogeochemistry and physiological processes, inducing leaf-edge burns, chlorosis/necrosis, reducing vegetative growth in crops; at ≥40 mM, NaCl mortality was induced in strawberry. Signifiacntly decreased K/Na, Ca/Na and Mg/Na concentration ratios with raising salinity were confirmed in all tissues. The combined CdxNaCl stresses (vs. control) increased leaf Cd accumulation (up to 42-fold in lettuce and 23-fold in strawberry), whereas NaCl salinity increased the accumulation of Zn (>1.5-fold) and Cu (up to 1.2-fold) in leaves. Lettuce accumulated the toxic Cd concentration (up to 12.6 mg/kg) in leaves, suggesting the strong root-to-shoot transport of Cd. In strawberry Cd, concentration was similar (and sub-toxic) in fruits and leaves, 2.28 and 1.86 mg/kg, respectively, suggesting lower Cd root-to-shoot translocation, and similar Cd mobility in the xylem and phloem. Additionally, the accumulation of Cd in strawberry fruits was exacerbated at high NaCl exposure (60 mM) compared with lower NaCl concentrations. Thus, in salinized, slightly acidic and organically rich rhizosphere, pronounced organo- and/or chloro-complexation likely shifted metal biogeochemistry toward increased mobility and phytoavailability (with metal adsorption restricted due to Na+ oversaturation of the caton exchange complex in the substrate), confirming the importance of quality water and soils in avoiding abiotic stresses and producing non-contaminated food.

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tünde Pusztahelyi ◽  
István Pócsi

Knowledge on the functions, cooperation, and interplays of the signaling and regulatory pathways of filamentous fungi is crucial when their industrial performance is improved or when new-type antifungals are developed. Many research groups aim at a deeper understanding of vegetative growth signaling because this cascade also influences other important physiological processes including asexual and sexual developments, autolysis and apoptotic cell death as well as the production of a wide array of important secondary metabolites. This review also focuses on how this signaling pathway is interconnected with other signaling cascades setting up a robust but delicately regulated signaling network in the Aspergilli.


2020 ◽  
Author(s):  
Yiran Cheng ◽  
Xu Zhang ◽  
Sha Wang ◽  
Xue Xiao ◽  
Jian Zeng ◽  
...  

Abstract Background To study the cadmium (Cd) accumulation in wheat grain, we evaluated the grain Cd concentrations of 46 common wheat cultivars grown at two sites in Sichuan, China and selected five different grain Cd accumulators (a high-Cd accumulator ZM18, four low-Cd accumulators YM51, YM53, SM969 and CM104) to explore the physiological processes of Cd accumulation in the grain of wheat grown under varying degrees of Cd stress. Results Our results showed that the Cd concentration in grain differed among genotypes. Under low-Cd stress, the grain Cd concentration was correlated with the Cd translocation factor (TF) of roots to grain and all the Cd redistribution factors (RFs). Compared with the ZM18, the cultivars YM53 and SM969 accumulated less Cd in the grain due to low Cd redistribution from lower stems and older leaves to grain. The low-Cd accumulators YM51 and CM104 were due to low Cd transport from roots to grain, and low Cd redistribution from glumes, flag leaves, lower stems, and older leaves to grain. Under high-Cd stress, the ZM18, YM53, and SM969 accumulated significantly more Cd in the grain, root and other tissues than did YM51 and CM104. Correlation analyses showed that the grain Cd concentration of wheat under high Cd stress was positively correlated with the Cd concentration in each tissue and the TFs of roots to grains, rachis, internode 1 and flag leaves. Conclusions Cd translocation directly from roots to grain and Cd redistribution from shoots to grain determines the Cd accumulation in grain of wheat cultivars under low-Cd stress. Cd uptake by root and then synchronously transported to new shoots determined the differences of Cd accumulation in the grain of wheat cultivars under high Cd stress.


Author(s):  
O. Bat-Erdene ◽  
A. Szegő ◽  
M. Gyöngyik ◽  
I. Mirmazloum ◽  
I. Papp

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 319-342
Author(s):  
Kanika Khanna ◽  
Nandni Sharma ◽  
Sandeep Kour ◽  
Mohd. Ali ◽  
Puja Ohri ◽  
...  

Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.


2020 ◽  
Vol 21 (2) ◽  
pp. 621 ◽  
Author(s):  
Md. Sarafat Ali ◽  
Kwang-Hyun Baek

Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.


2020 ◽  
Vol 71 (22) ◽  
pp. 6945-6957
Author(s):  
Youhong Fan ◽  
Xiangli Niu ◽  
Li Huang ◽  
Rachel Gross ◽  
Han Lu ◽  
...  

Abstract BSD (mammalian BTF2-like transcription factors, synapse-associated proteins, and DOS2-like proteins) is a conserved domain that exists in a variety of organisms, but its function has not been well studied. Here, we identified a novel BSD domain-containing protein (SlBSD1) in tomato (Solanum lycopersicum). Biochemical and microscopy assays indicated that SlBSD1 is a functional transcription factor that is predominantly localized in the nucleus. Loss-of-function and overexpression analyses suggested that SlBSD1 is a novel regulator of vegetative growth and leaf senescence in tomato. SlBSD1-knockdown (-KD) plants exhibited retarded vegetative growth and precocious leaf senescence, whereas SlBSD1-overexpression (-OX) plants displayed the opposite phenotypes. The negative role of SlBSD1 in leaf senescence was also supported by RNA-seq analysis comparing leaf tissues from SlBSD1-KD and wild-type plants. In addition, contents of soluble solids were altered in fruits in the SlBSD1-KD and SlBSD1-OX plants. Taken together, our data suggest that the novel transcription factor SlBSD1 plays important roles in controlling fruit quality and other physiological processes in tomato, including vegetative growth and leaf senescence.


Sign in / Sign up

Export Citation Format

Share Document