scholarly journals Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Anita Arenas-M ◽  
Francisca M. Castillo ◽  
Diego Godoy ◽  
Javier Canales ◽  
Daniel F. Calderini

In a changing climate, extreme weather events such as heatwaves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum L. spp. durum wheat to short-term heat stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight (23.9%) and grain dimensions from HS treatment. Grain quality was also affected, showing a decrease in starch content (20.8%), in addition to increments in grain protein levels (14.6%), with respect to the control condition. Moreover, RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.

Author(s):  
Anita Arenas-M ◽  
Francisca M. Castillo ◽  
Diego Godoy ◽  
Javier Canales ◽  
Daniel F. Calderini

In a changing climate, extreme weather events such as heat waves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum spp. durum wheat to a short-term heat-stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight and size from HS treatment. Grain quality was also affected, showing a decrease in starch content in addition to increments in grain protein levels. Moreover, an RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.


2008 ◽  
Vol 20 (4) ◽  
pp. 323-333 ◽  
Author(s):  
Ana S. Dias ◽  
Ana S. Bagulho ◽  
Fernando C. Lidon

The yield and grain quality (as well as technological traits) of two heat-stressed genotypes of bread (Triticum aestivum L.) and durum wheat (Triticum turgidum subsp. durum) having different tolerance to high temperatures after anthesis were investigated. Heat stress, during grain filling, triggered grain shrinkage with a reduced weight and ultrastructural changes in the aleurone layer and in the endosperm cells. Heat stress also decreased the sedimentation index SDS, an effect associated with increased protein content in the grain but with decreased levels of essential amino acids. Although the responses to heat stress were similar among the Triticum genotypes, it is further suggested that during grain filling, high temperatures might affect gluten strength, diminishing the wheat flour quality.


1999 ◽  
Vol 50 (3) ◽  
pp. 357 ◽  
Author(s):  
Roxana Savin ◽  
Marc E. Nicolas

In order to determine the importance of timing of short periods of high temperature and drought on grain weight and grain quality, a glasshouse experiment was carried out in which Schooner barley was exposed to short periods of heat stress (40˚C for 6 h/day for 5 consecutive days) or drought at early grain filling (10–15 days after anthesis, DAA), mid grain filling (20–25 DAA), or late grain filling (30–35 DAA). Individual grain weight was most sensitive to heat stress and drought treatments imposed early in grain filling and was less sensitive to later treatments. The reduction in grain weight was greater under heat stress (average 13%) than under drought in this study (average 6%). Starch was reduced in amount and quality, especially with early stresses during grain filling, but grain nitrogen percentage was similar between treatments.


Author(s):  
Assia Bouzid ◽  
Ali Arous ◽  
Oum Cheikh Felouah ◽  
Othmane Merah ◽  
Ahmed Adda

In Algeria, drought affects grain weight and modified its biochemical composition. The present study was conducted to evaluate the effect of two water supplies (100% FC, 30% FC) on grain weight and composition of five genotypes of durum wheat (Triticum durum Desf.). We also examined the effects of shading of peduncle, spike and the entire plant and excision of awns, flag leaves and foliar system on grain weight, starch and amylose/amylopectin ratio. From this study, we found that grain weight was significantly reduced by the application of water deficit. However, this action is greatly related to genotype type. It is admitted that this trait is strongly conditioned by the grain filling process. The morphological characteristics of plants were implicated to grain weight elaboration. Among organs studied, the photosynthetic rate of spick and reserves remobilization from stem announced determinant in grain filling. We found also that starch content which is associated to amylose/amylopectin ratio is strongly related to grain weigh. Finally, grains weight variations were associated to starch content and mainly related to the water supply condition.


1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 315
Author(s):  
Sara Graziano ◽  
Nelson Marmiroli ◽  
Giovanna Visioli ◽  
Mariolina Gullì

Durum wheat is an important food source in Mediterranean countries, and Italy is the major producer of durum wheat in Europe. The quality of durum wheat flours depends on the type and amount of gluten proteins and starch while flour nutritional value rests on metabolite contents such as polyphenols. In this work, two Italian cultivars, Iride and Svevo, were analyzed for two years (2016–2017) in four Italian regions to explore how the environment affects: (i) reserve proteome; (ii) starch content and composition; and (iii) free, conjugated, bound phenolics and antioxidant capacity. The impact of environmental and meteorological conditions was significant for many traits. Regardless of the cultivation site, in 2017, a year with less rainfall and a higher temperature during grain filling, there was an increase in low molecular weight glutenins, in the glutenin/gliadin ratio and in the A-type starch granules size, all parameters of higher technological quality. In the same year, the cultivars showed higher amounts of polyphenols and antioxidant capacity. In conclusion, the two wheat cultivars, selected for their medium to high yield and their good quality, had higher performances in 2017 regardless of their sowing locations.


Author(s):  
Chubasenla Aochen ◽  
Pravin Prakash

Fifty wheat genotypes were evaluated at the seedling stage of growth, for genetic variation in cellular thermotolerance by cell membrane thermostability (CMS) and Triphenyl tetrazolium choride (TTC) assays. A subset of eight genotypes was also evaluated at the anthesis stage using the same assays. Large and significant differences existed among wheat genotypes for TTC and CMS at the seedling and anthesis stages. Average thermotolerance declined from seedling to anthesis stage. Thermotolerance was well-correlated between growth stages among the eight genotypes for both CMS (r=0.95; p= 0.01) and TTC (r=0.92; p= 0.01). The correlation between TTC and CMS among the eight genotypes at seedling and anthesis stages was significant (r=0.95; p=0.01 and r =0.93; p= 0.01, respectively). The effect of heat stress on wheat genotypes selected on the basis of TTC and CMS thermotolerance ratings were evaluated. 1000-grain weight, grain filling duration (GFD) and grain filling rate (GFR) reduced under heat stress. The heat susceptibility index (S) revealed K-65 and Yangmai6 to be susceptible and NW-1014 and DBW-14 to be moderately tolerant to heat stress. GFR and 1000-grain weight were found to have highly significant positive correlation with CMS and TTC ratings at both seedling and anthesis stages.


2006 ◽  
Vol 57 (2) ◽  
pp. 227 ◽  
Author(s):  
Daniel F. Calderini ◽  
M. P. Reynolds ◽  
G. A. Slafer

Source limitation during grain filling is important for both management and breeding strategies of grain crops. There is little information on the sensitivity of grain weight of temperate cereals to variations in source–sink ratios, and no studies are available on the comparative behaviour of temperate cereals growing together in the same experiment. The objective of the current study was to evaluate, under field conditions, the response of grain weight to different source–sink ratios during grain filling in high-yielding cultivars of bread wheat, durum wheat, and triticale at 2 contrasting locations. Two experiments were carried out at C. Obregon and El Batan in Mexico. In each location, 6 genotypes (2 bread wheat, 2 durum wheat, 2 triticale) were evaluated. A week after anthesis, 2 source–sink (control and halved spikes) treatments were imposed. Location and genotype significantly (P < 0.01) affected grain yield and components. Significant grain weight increases (P < 0.05) were found only in 2 cases in El Batan. The highest response of 17% was found in triticale, with less than 10% in most of the other genotypes. The effect of genotype and location is discussed.


2016 ◽  
Vol 43 (10) ◽  
pp. 919 ◽  
Author(s):  
Hamid Shirdelmoghanloo ◽  
Daniel Cozzolino ◽  
Iman Lohraseb ◽  
Nicholas C. Collins

Short heat waves during grain filling can reduce grain size and consequently yield in wheat (Triticum aestivum L.). Grain weight responses to heat represent the net outcome of reduced photosynthesis, increased mobilisation of stem reserves (water-soluble carbohydrates, WSC) and accelerated senescence in the grain. To compare their relative roles in grain weight responses under heat, these characteristics were monitored in nine wheat genotypes subjected to a brief heat stress at early grain filling (37°C maximum for 3 days at 10 days after anthesis). Compared with the five tolerant varieties, the four susceptible varieties showed greater heat-triggered reductions in final grain weight, grain filling duration, flag leaf chla and chlb content, stem WSC and PSII functionality (Fv/Fm). Despite the potential for reductions in sugar supply to the developing grains, there was little effect of heat on grain filling rate, suggesting that grain size effects of heat may have instead been driven by premature senescence in the grain. Extreme senescence responses potentially masked stem WSC contributions to grain weight stability. Based on these findings, limiting heat-triggered senescence in the grain may provide an appropriate focus for improving heat tolerance in wheat.


1970 ◽  
Vol 36 (1) ◽  
pp. 1-12
Author(s):  
Alpay Balkan ◽  
Temel Gençtan ◽  
Oguz Bilgin

This research was carried out in experimental field of Field Crops Department of Agricultural Faculty of Namik Kemal University in randomized split block design with three replications per treatment during 2004-2005 and 2005-2006. The objective of this study was to find out the contribution rates of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade and other leaf blades to main yield components in three durum wheat cultivars (cv. Kiziltan-91, Kunduru-1149, and Yelken-2000). The results of this experiment showed that removal of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade, and other leaf blades reduced significantly spike weight, number of grains per spike, grain weight per spike, and 1000-grain weight except the number of spikelets per spike. It was concluded that the organs play an important role in grain yield in durum wheat during grain filling stage.   Keywords: Photosynthetic organs; yield components; durum wheat.DOI: http://dx.doi.org/10.3329/bjar.v36i1.9224 BJAR 2011; 36(1): 1-12


Sign in / Sign up

Export Citation Format

Share Document