scholarly journals Molecular Design of Microcapsule Shells for Visible Light-Triggered Release

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 904 ◽  
Author(s):  
Domenico Pirone ◽  
Valentina Marturano ◽  
Rita Del Pezzo ◽  
Susana Fernández Prieto ◽  
Todd Underiner ◽  
...  

The development of photo-responsive capsules to tune and control the sustained-release of encapsulated actives is a fascinating and challenging route to improve the performances and effectiveness of a wide range of delivery applications. In this work, we report the preparation of visible light-responsive capsules obtained via oil-in-water interfacial polycondensation between modified diacyl-chloride azobenzene moiety and diamine flexible spacer in the presence of cross-linkers with different structures and functionalities. The effect on the release profile of the encapsulated perfume oil was investigated using three flexible spacers with different lengths (1,8-diaminooctane; 1,6-diaminohexane and 1,4-diaminobutane) and two types of cross-linkers (1,3,5-benzenetricarbonyl trichloride and melamine). We analyzed how the properties of microcapsules can be tailored changing the design of the shell structure. Fine tuning of the perfume release profiles was obtained. The changes in capsules size and morphology due to visible light irradiation were monitored via light scattering, optical microscopy and atomic force microscopy. Perfume release was 50% faster in the systems prepared with melamine as the cross-linker. Modelling studies were carried out to support the discussion of the experimental results.

Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


2020 ◽  
Vol 1 (1) ◽  
pp. 30-36
Author(s):  
Shubha Jayachamarajapura Pranesh ◽  
Diwya Lanka

Background: Textile industries discharge harmful synthetic dyes to nearby water sources. These colour effluents should be treated before discharge to reduce the toxicity caused by synthetic colours. Objective: To synthesize visible light active superstructures to reduce water pollution caused by textile industries. Methods: We have successfully synthesized ZnO/Dy/NiO hybrid nanocomposites using waste curd as fuel by a simple combustion method. The obtained material was able to reduce recombination and enhanced the photocatalytic degradation of organic pollutants. The as-synthesized material was characterized by XRD, absorption spectroscopy, FESEM, EDAX, etc. The obtained hybrid nanostructure was used as a photocatalyst for the degradation of methylene blue under sunlight, UV light as well as in dark. Comparative experiments were carried out with a variation of catalytic load, pH, dye concentrations, etc. for a better understanding of the performance of the catalyst at various conditions. Results and Conclusion: The ternary compound shows wide range of absorption by expanding absorption band both in UV and visible regions. ZnO/Dy/NiO hybrid nanocomposites performed well and showed uniqueness in the activity uder visible light.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


Work ◽  
2021 ◽  
pp. 1-9
Author(s):  
Linda Widar ◽  
Erika Wall ◽  
Sven Svensson

BACKGROUND: The complex position of a first line manager is characterized by heavy workload and contradictory demands. Little is known about how first line managers experience demand and control in their work. OBJECTIVES: The aim of this study was to explore experiences of demand and control among first line managers within psychiatric and addiction care. METHOD: In the present study, interviews with ten managers in for-profit psychiatric and addiction care in Sweden were analyzed with a phenomenographic approach. RESULTS: The managers experiences of demand and control implied varied and extensive responsibilities for a wide range of professions; regulation by organizational, economic, and political frameworks; creating balance in their work; and handling the emergence and consequences of acute crisis. These experiences of demand and control involved high and contradictory demands together with coexisting high and low levels of control. Many of their work characteristics could be described in terms of both demand and control. CONSLUSION: The first line managers experiences of demand and control are more complex than implied by the job demand control theory. Our results suggest that the organizational position and branch should be considered when identifying health hazards in the work environment of first line managers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Putri Anis Syahira Mohamad Jamil ◽  
Karmegam Karuppiah ◽  
Irniza Rasdi ◽  
Vivien How ◽  
Shamsul Bahri Mohd Tamrin ◽  
...  

Abstract This paper provides a specific deliberation on occupational hazards confronted daily by Malaysian Traffic Police. Traffic police is a high-risk occupation that involves a wide range of tasks and, indirectly, faced with an equally wide variety of hazards at work namely, physical, biological, psychosocial, chemical, and ergonomic hazards. Thereupon, occupational injuries, diseases, and even death are common in the field. The objective of this paper is to collate and explain the major hazards of working as Malaysian traffic police especially in Point Duty Unit, their health effects, and control measures. There are many ways in which these hazards can be minimised by ensuring that sufficient safety measures are taken such as a wireless outdoor individual exposure indicator system for the traffic police. By having this system, air monitoring among traffic police may potentially be easier and accurate. Other methods of mitigating these unfortunate events are incorporated and addressed in this paper according to the duty and needs of traffic police.


Sign in / Sign up

Export Citation Format

Share Document