scholarly journals Low-Cost Synthesis of Alumina Nanoparticles and Their Usage for Bisphenol-A Removal from Aqueous Solutions

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1709
Author(s):  
Ollé Rodrigue Kam ◽  
Issaka Garikoe ◽  
Corneille Bakouan ◽  
Boubié Guel

Gamma-alumina nanoparticles (γANPs) were obtained from a low-cost process by using natural bauxites. The γANPs materials were characterized by X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) theory, scanning electron microscopy (SEM), atomic force microscopy (AFM), and were functionalized with N-cetyl-N, N, N, trimethylammonium bromide (CTAB), leading to CTAB modified γ-alumina nanoparticles (γANPs-CTAB). These novel functionalized γANPs-CTAB were characterized by XRPD, FTIR, and were used as an adsorbent for bisphenol-A (BPA) removal from water. Batch investigations were conducted under different experimental conditions (e.g., adsorbent dose, agitation time, initial concentration, and pH and surfactant loading) in order to optimize BPA adsorption and to identify the adsorption mechanisms in the system γANPs-CTAB-BPA. The effect of pH on the adsorption showed that the quantity of BPA removed increased remarkably until the pH value was 4, then remained almost constant until the pH value was up to 10, and then decreased for pH values greater than 10. For an initial BPA concentration of 20 mg/L and an adsorbent dose of 12.5 g/L at a pH value of 10, the removal efficiency achieved was 91.80 ± 0.21%. The adsorption mechanism was perfectly described by pseudo-second-order kinetics and the Langmuir isotherm. γANPs-CTAB materials were found to be effective adsorbents for BPA removal from water.

2013 ◽  
Vol 864-867 ◽  
pp. 408-412
Author(s):  
Guang Fu Xu ◽  
Yi Yun Liu ◽  
Rui Xin Guo

In this study, orange peel was utilized as low-cost adsorbent to remove furadan from aqueous solution by adsorption. All the experiments were conducted at 30 °C to investigate the effects adsorbent dose, pH value and ionic strength on furadan adsorption and the optimal experimental conditions were ascertained. The percentage removal (%) increased with an increase in the initial adsorbent dose, whereas the value of qe (mg.g-1) decreased with an increase in the initial adsorbent dose .The curve of qe and removal percentage can be divided into two stages (first stage: adsorbent dose between 0.05 and 0.20 g; second stage: adsorbent dose between 0.25 and 0.35 g). The value of qe (mg.g-1) for OP increased as the pH increase, and reached the maximum at pH 7.81, then decreased as the pH continue increasing. The initial pH value of furadan solution should be controlled between 7.50 and 8.00. In addition, the value of qe decreased sharp as the initial Na+ concentration was increased from 0 to 2.5 ×10-3 mol.L-1, then, the value of qe was not significantly altered beyond the initial Na+ concentration 2.5×10-3 mol.L-1. Therefore in order to enhance adsorption efficiency of furadan by OP, the subsequent experiments were carried out in the low ionic strength of furadan solution.


2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


Author(s):  
Yanjun Liu ◽  
Xiaoqian Zheng ◽  
Shufen Zhang ◽  
Shujuan Sun

Abstract Heterogeneous photo-Fenton like catalysts with low cost, little hazardous, high effective and facile separation from aqueous solution were highly desirable. In this study, sludge-based catalysts combining nano Fe3O4-MnO2 and sludge activated carbon were successfully synthesized by high-temperature calcination method and then characterized. These synthetic materials were applied to remove ibuprofen in the heterogeneous photo-Fenton process. The preparation conditions of sludge-based catalysts optimized by orthogonal experiments were 2.0 M of ZnCl2, a temperature of 500 °C, a pyrolysis time of 60 min, and a sludge ratio: Fe3O4-MnO2 of 25:2. In batch experiments, the optimal experimental conditions were determined as catalyst dosage of 0.4 g·L−1, hydrogen peroxide concentration of 3.0 g·L−1, pH value of 3.3, and contact time of 2.5 h. The degradation rate Sludge/Fe3O4-MnO2 catalyst to ibuprofen is up to 95%. The removal process of ibuprofen fitted the pseudo-second-order kinetic model, and the photocatalytic degradation process was the main factor controlling the reaction rate. The catalytic mechanism was proposed according to the FTIR analysis and mass spectrometry product analysis, it was mainly attributed to the interaction between hydroxyl groups and benzene rings.


2019 ◽  
Vol 20 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Thi Thuong Nguyen ◽  
Thi Ngoc Thu Nguyen ◽  
Long Giang Bach ◽  
Duy Trinh Nguyen ◽  
Thi Phuong Quynh Bui

The worm-like exfoliated graphite (EG) based adsorbents prepared from low-cost natural graphite flakes via facile synthesis processes have been found to be efficient adsorbents when it comes to removing Pb (II) from aqueous solution. EG was fabricated by chemical intercalation and microwave assisted exfoliation. Furthermore, the magnetic exfoliated graphite (MEG) was developed by incorporating CoFe2O4 particles into the EG layers using the citric acid based sol-gel technique. Adsorption behaviour of Pb (II) on the as-prepared adsorbents was investigated by taking several experimental conditions into consideration such as contact time, initial concentration, adsorbent dosage, and pH value. The results with initial neutral pH indicated that the adsorption isotherms for Pb (II) on the EG and MEG were well consistent with the Langmuir isotherm model revealing the maximum adsorption capacity of 106 mg/g and 68 mg/g for EG and MEG, respectively. The adsorption kinetics of Pb (II) was found to adhere to the pseudo-second-order kinetic model. The chemical interaction between ? electrons on graphite sheets and Pb (II) ions was suggested to play an essential role in the adsorption mechanism. The introduction of magnetic CoFe2O4 to the EG was found to induce the shift of optimal pH value to a more basic condition. The characterization of the adsorbents was performed using relevant analysis techniques such as Scanning electron microscope (SEM), X–ray powder diffraction (XRD), vibrating-sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The results of this work suggest a high possibility for application of the as-prepared modified graphite to remove hazardous substances in practical wastewater treatment systems. ABSTRAK:  Penyerap Pengelupas Grafit (EG) yang berupa seperti cacing dihasilkan dari grafit semulajadi yang murah melalui proses sintesis serpihan, ia juga merupakan penyerap yang bagus dalam mengasingkan Pb (II) daripada larutan akues. EG direka dengan tindak balas interkalasi kimia dan pengelupasan melalui gelombang mikro. Tambahan, pengelupas grafit magnet (MEG) telah dihasilkan dengan memasukkan zarah CoFe2O4 ke dalam lapisan EG menggunakan teknik sol-gel yang berasaskan asid sitrik. Tindak balas penyerapan Pb (II) pada penyerap yang disiapkan ini, dikaji dengan mengambil kira beberapa keadaan eksperimen seperti waktu disentuh, konsentrasi awal, dos penyerap dan nilai pH.  Hasil keputusan pH neutral awal menunjukkan bahawa isoterm penyerapan bagi Pb (II) pada EG dan MEG adalah konsisten dengan model isoterm Langmuir. Ini menunjukkan kapasiti penyerapan maksimum 106 mg/g dan 68 mg/g bagi EG dan MEG, masing-masing. Penyerapan kinetik Pb (II) didapati mematuhi model kinetik pesudo-order-kedua. Interaksi kimia antara elektron ? pada helaian grafit dan ion Pb (II) memainkan peranan penting dalam mekanisme penyerapan. Pengenalan magnet CoFe2O4 kepada EG didapati telah mengubah nilai pH optimum kepada keadaan asal. Pengelasan penyerapan dilakukan menggunakan teknik analisis yang relevan seperti Mikroskop Elektron Pengimbasan (SEM), Difraksi Serbuk sinar-X (XRD), Magnetometer Sampel-Getaran (VSM) dan Inframerah Perubahan-Fourier (FTIR). Hasil kerja ini mencadangkan kemungkinan besar bagi penggunaan grafit ubah suai yang disediakan bagi membuang bahan berbahaya dalam sistem rawatan air sisa praktikal.


2020 ◽  
Vol 10 (11) ◽  
Author(s):  
Yohanis Birhanu ◽  
Seyoum Leta ◽  
Getachew Adam

AbstractNowadays, Cr-loaded wastewater released from industrial activities pose an increasing risk to human health and the environment. Adsorption processes have been widely used for the removal of chromium from the waste stream. In this regard, natural adsorbents are the most preferable and cost-effective methods. In this study, the efficiency of Odaracha adsorbent as a novel green technology in the removal of chromium from synthetic wastewater is analyzed. Batch adsorption experiments were conducted to evaluate the effect of contact time, pH, adsorbent dose, and initial concentration of adsorbate on Cr removal. The surface morphology of Odaracha adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. Experimental results showed that Odaracha adsorbent could perform effectively in a wide range of experimental conditions. However, in optimum experimental conditions, such as 180-min contact time, pH 3, and 15 g/L of adsorbent dose Odaracha adsorbent removes 94.68% of Cr from an aqueous solution having 110 mg/L of Cr concentration.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


Sign in / Sign up

Export Citation Format

Share Document