scholarly journals Hospitals and Laboratories on Paper-Based Sensors: A Mini Review

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5998
Author(s):  
Huaizu Zhang ◽  
Chengbin Xia ◽  
Guangfu Feng ◽  
Jun Fang

With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Samia Ben-Ali

The use of renewable substrates as biosorbents has a great attention in wastewater treatment. The pomegranate peel (PGP) constitutes one of these substrates. A review is carried out to investigate the potential of pomegranate peel (PGP) for wastewater treatment. Physical and chemical PGP properties are presented and compared to those of Tunisian pomegranate peel (El Gabsi). Raw and modified PGP performance and sorption capacity for metals, dyes, and organic pollutants are evaluated. Different experimental sorption conditions such as concentration, contact time, pH, temperature, and adsorbent dose used in the literature are illustrated. Studied and best-fitted kinetics and isotherm models to experimental data and thermodynamic parameters are compared. The effects of activating physical and/or chemical conditions on the activated PGP properties are presented. This paper reveals noteworthiness properties of raw PGP for wastewater treatment compared to this activated form. The comparison between activated and raw PGP morphology exhibits that the activation does not necessarily improve the PGP adsorption capacity. Despite a limited research carried out on the raw PGP biosorbent, it appears from this study that it has very good adsorption properties, making it a serious and low-cost renewable substrate toward practical applications in wastewater treatment compared to various other waste agricultural biomass.


Author(s):  
Ana Serrano-Mamolar ◽  
Miguel Arevalillo-Herráez ◽  
Jesus G. Boticario

Emotion recognition is becoming very relevant in educational scenarios, since previous research has proven the strong influence of emotions on the student's engagement and motivation. There is no standard method for stating student's affect, but physiological signals have been widely used in educational contexts. Physiological signals have been proved to offer high accuracy in detecting emotions because they reflect spontaneous affect-related information, and which is fresh and do not require an additional control or interpretation. However, most proposed works use measuring equipment that limit its applicability in real-world scenarios because of their high cost and their intrusiveness. Expensive material means an economic challenge for schools and reduce the scalability of the experiments. Intrusive equipment can be uncomfortable for the students which can lead to errors in the collected data. In this work, we analyse the feasibility of developing a low-cost non-intrusive device that integrates easy-to-capture signals that guarantee high detection accuracy. The advantage of the approach also lies in using user’s centred information sources (intra-subject) in real-world situations, which provide better detection accuracy, by offering models adapted to each subject. To this end, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We study the multi-fusion of every possible combination of these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. Results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task. This work concludes that the implementation of a low-cost wrist-worn device for recognising relevant emotions from each student is possible and open the way to a wide range of practical applications in the context of adaptive learning systems.


Author(s):  
Кonstantin Е. Lesnykh ◽  
◽  
Aleksey А. Korshak ◽  
Nafis N. Khafizov ◽  
Andrey A. Kuznetsov ◽  
...  

The conditions for the formation of technological losses of oil and petroleum products during transportation through the main pipelines are considered and it is established that the main sources of these losses are large and small airflows of reservoirs. The value of technological losses from evaporation from tanks depends on a large number of factors, in particular: storage temperatures, pumping rates, tank filling heights, physical and chemical properties of the transported liquid, tanks turnover. Until now, a unified approach to the procedure for determining the qualitative and quantitative composition of technological losses from the evaporation of hydrocarbons during storage has not been developed, which leads to disagreements in assessing the actual losses of energy carriers. According to the analysis, it was found that the best is the calculation method for determining the actual irrecoverable losses of hydrocarbons. Its application involves the use of mathematical relationships that describe the dynamics of evaporation of oil and petroleum products in real conditions. To establish such relationships, it is proposed to develop and implement a unit that enables simulation of the process of evaporation from tanks under various conditions and obtaining experimental data taking into account a combination of a variety of factors that affect the amount of the technological losses.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


2019 ◽  
Vol 10 (32) ◽  
pp. 7484-7495 ◽  
Author(s):  
Huadong Yuan ◽  
Tiefeng Liu ◽  
Yujing Liu ◽  
Jianwei Nai ◽  
Yao Wang ◽  
...  

This review summarizes recent progress of biomass-derived materials in Li–S batteries. These materials are promising due to their advantages including strong physical and chemical adsorption, high abundance, low cost, and environmental friendliness.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanxiang Chen ◽  
Jianjian Yi ◽  
Zhao Mo ◽  
Yanhua Song ◽  
Wenshu Yang ◽  
...  

Abstract Photocatalysis technology has potential application in the field of energy and environment. How to expand visible light utilization and promote the separation efficiency of the carriers are the key issues for the high active photocatalysts preparation and future practical applications. In this work, a ternary metal sulfide Nb0.9Ta0.1S2 was prepared and used as an electron collector in the photocatalytic application. As a result, the generated electrons are quickly transferred to the surface of the composite to participate in the reaction. It was demonstrated that the photocatalytic activity of 2D-C3N4 was enhanced after the modification of Nb0.9Ta0.1S2. The Nb0.9Ta0.1S2/2D-C3N4 composite material was synthesized by solvothermal method. The composition of 5% Nb0.9Ta0.1S2/2D-C3N4 showed the highest H2 evolution rate of 1961.6 μmolg−1h−1, which was 6.6 times that of 2D-C3N4. The 15% Nb0.9Ta0.1S2/2D-C3N4 exhibited the best activity in Rhodamine B degradation rate of 97% in 2 h, which is 50% higher than that of 2D-C3N4. Nb0.9Ta0.1S2/2D-C3N4 can be used as electron trap to promote the effective separation of electron–hole pairs. This work provides benchmarks in exploring low-cost and efficient cocatalyst.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sign in / Sign up

Export Citation Format

Share Document