scholarly journals A 0.3 V PNN Based 10T SRAM with Pulse Control Based Read-Assist and Write Data-Aware Schemes for Low Power Applications

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6591
Author(s):  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Shih-Chang Hsia ◽  
S. M. Salahuddin Morsalin ◽  
...  

An innovative and stable PNN based 10-transistor (10T) static random-access memory (SRAM) architecture has been designed for low-power bit-cell operation and sub-threshold voltage applications. The proposed design belongs to the following features: (a) pulse control based read-assist circuit offers a dynamic read decoupling approach for eliminating the read interference; (b) we have utilized the write data-aware techniques to cut off the pull-down path; and (c) additional write current has enhanced the write capability during the operation. The proposed design not only solves the half-selected problems and increases the read static noise margin (RSNM) but also provides low leakage power performance. The designed architecture of 1-Kb SRAM macros (32 rows × 32 columns) has been implemented based on the TSMC-40 nm GP CMOS process technology. At 300 mV supply voltage and 10 MHz operating frequency, the read and write power consumption is 4.15 μW and 3.82 μW, while the average energy consumption is only 0.39 pJ.

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 685
Author(s):  
Ming-Hwa Sheu ◽  
S M Salahuddin Morsalin ◽  
Chang-Ming Tsai ◽  
Cheng-Jie Yang ◽  
Shih-Chang Hsia ◽  
...  

To incur the memory interface and faster access of static RAM for near-threshold operation, a stable local bit-line static random-access memory (SRAM) architecture has been proposed along with the low-voltage pre-charged and negative local bit-line (NLBL) scheme. In addition to the low-voltage pre-charged and NLBL scheme being operated by the write bit-line column to work out for the write half-select condition. The proposed local bit-line SRAM design reduces variations and enhances the read stability, the write capacity, prevents the bit-line leakage current, and the designed pre-charged circuit has achieved an optimal pre-charge voltage during the near-threshold operation. Compared to the conventional 6 T SRAM design, the optimal pre-charge voltage has been improved up to 15% for the read static noise margin (RSNM) and the write delay enriched up to 22% for the proposed NLBL SRAM design which is energy-efficient. At 400 mV supply voltage and 25 MHz operating frequency, the read and write energy consumption is 0.22 pJ and 0.23 pJ respectively. After comparing with the related works, the access average energy (AAE) is lower than in other works. The overall performance for the proposed local bit-line SRAM has achieved the highest figure of merit (FoM). The designed architecture has been implemented based on the 1-Kb SRAM macros and TSMC−40 nm GP process technology.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550103 ◽  
Author(s):  
Mohammad Soleimani ◽  
Siroos Toofan ◽  
Mostafa Yargholi

In this paper, a general architecture for analog implementation of loser/winner-take-all (LTA/WTA) and other rank order circuits is presented. This architecture is composed of a differential amplifier with merged n-inputs and a merged common-source with active load (MCSAL) circuit to choose the desired input. The advantages of the proposed structure are simplicity, very high resolution, very low supply voltage requirements, very low output resistor, low power dissipation, low active area and simple expansion for multiple inputs by adding only three transistors for each extra input. The post-layout simulation results of proposed circuits are presented by HSPICE software in 0.35-μm CMOS process technology. The total power dissipation of proposed circuits is about 110-μW. Also, the total active area is about 550-μm2 for five-input proposed circuits, and would be negligibly increased for each extra input.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1258
Author(s):  
Câncio Monteiro ◽  
Yasuhiro Takahashi

Internet of Things (IoT) has enabled battery-powered devices to transmit sensitive data, while presenting high power consumption and security issues. To address these challenges, adiabatic-based physical unclonable functions (PUFs) offer a promising solution for low-power and secure IoT device applications. In this study, we propose a novel low-power two-phase clocking adiabatic PUF. The proposed adiabatic PUF utilizes a trapezoidal power clock signal with a time-ramped voltage to achieve an improved energy efficiency and reliable start-up PUF behavior. Static CMOS logic is employed to produce stable challenge-response pairs (CRPs) in the adiabatic mode. The pull-down network is designed to control the PUF cell to charge and discharge its output nodes with a constant supply current during secure key generation. The body effect of PMOS transistors, ambient temperatures, and CMOS process variations are investigated to examine the uniqueness and reliability of the proposed work. The proposed adiabatic PUF is simulated using 0.18 µm CMOS process technology with a supply voltage of 1.8 V. The uniqueness and reliability of the proposed adiabatic PUF are 49.82% and 99.47%, respectively. In addition, it requires a start-up power of 0.47 µW and consumes an energy of 15.98 fJ/bit/cycle at the reference temperature of 27 °C.


2006 ◽  
Vol 15 (01) ◽  
pp. 13-27 ◽  
Author(s):  
KUO-HSING CHENG ◽  
SHUN-WEN CHENG ◽  
WEN-SHIUAN LEE

This paper proposes two improved circuit techniques of True Single-Phase Clocking (TSPC) logic, which called Nonfull Swing TSPC (NSTSPC) and All-N-TSPC (ANTSPC). The voltage of internal node of the NSTSPC is not full swing; it saves partial dynamic power dissipation. And the ANTSPC uses NMOS transistors to replace PMOS transistors, the output loading of Φ-section is therefore reduced and a higher layout density is obtained. Through postlayout simulation comparisons between number of stacked MOS transistors and delay time, and supply voltage vs maximum frequency, the proposed NSTSPC and ANTSPC circuits show better operation speed and power performance than the conventional TSPC circuit. Finally, the new TSPC circuits are applied to a 64-bit hierarchical pipeline Carry Lookahead Adder (CLA), which based on TSMC 0.35 μm CMOS process technology. By using the techniques of NSTSPC and ANTSPC alternately, the 64-bit CLA is successfully implemented as a pipelined structure. The results of post-layout simulation show that the 64-bit CLA can be operated on 1.25 GHz clock frequency and its power/maximal frequency ratio is 151.4 μW/MHz.


2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Yasuhiro Takahashi ◽  
Hiroki Koyasu ◽  
S. Dinesh Kumar ◽  
Himanshu Thapliyal

Abstract Silicon Physical Unclonable Function (PUF) is a general hardware security primitive for security vulnerabilities. Recently, Quasi-adiabatic logic based physical unclonable function (QUALPUF) has ultra low-power dissipation; hence it is suitable to implement in low-power portable electronic devices such radio frequency identification (RFID) and wireless sensor networks (WSN), etc. In this paper, we present a design of 4-bit QUALPUF which is based on static random access memory (SRAM) for low-power portable electronic devices and then shows the post-layout simulation and measurement results. To evaluate the uniqueness and reliability, the 4-bit QUALPUF is implemented in 0.18 $$\upmu$$ μ m standard CMOS process with 1.8 V supply voltage. The 4-bit QUALPUF occupies 58.7$$\times$$ × 15.7 $$\upmu \mathrm {m}^{2}$$ μ m 2 of layout area. The post-layout simulation results illustrate that the uniqueness calculated from the inter-die HDs of the 4-bit QUALPUF is 47.58%, the average reliability is 95.10%, and the the energy dissipation is 29.73 fJ/cycle/bit. The functional measurement results of the fabricated chip are the same as the post-layout simulation results.


2021 ◽  
Author(s):  
Harekrishna Kumar ◽  
V.K Tomar

Abstract This paper presents a single-ended read and differential write half select free 9T static random access memory (SRAM) cell operates in the sub-threshold region. Proposed 9T SRAM cell shows a reasonable reduction in read and write power dissipation by a factor of 1.41× and 2.1× respectively as of conventional 6T (Conv.6T) SRAM cell. The stacking of transistors at core latch network minimizes the leakage power of the cell. The read static noise margin (RSNM) and write margin (WM) are upgraded by 2.16× and 2.06× respectively as of Conv.6T cell. A forward body bias technique is utilized in read path which results to decreases in read access time by a factor of 2.72× as of standard 6T SRAM cell. The mean value of Ion/Ioff ratio of the proposed cell is improved by 2.92× as compared to the Conv.6T SRAM cell. It is attributed to a reduction in bit-line leakage current. To achieve more soundness in characteristics of the proposed 9T SRAM cell, process variation effect on RSNM, power dissipation, and read current is calculated through Monte Carlo (MC) simulation at 5000 points. The obtained results are compared with reference SRAM cells at 0.3V supply voltage.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


Sign in / Sign up

Export Citation Format

Share Document