scholarly journals The Need to Accurately Define and Measure the Properties of Particles

Standards ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 19-38
Author(s):  
Yimin Deng ◽  
Raf Dewil ◽  
Lise Appels ◽  
Huili Zhang ◽  
Shuo Li ◽  
...  

When dealing with powders, a fundamental knowledge of their physical parameters is indispensable, with different methods and approaches proposed in literature. Results obtained differ widely and it is important to define standards to be applied, both toward the methods of investigation and the interpretation of experimental results. The present research intends to propose such standards, while defining general rules to be respected. Firstly, the problem of defining the particle size is inspected. It was found that describing the size of a particle is not as straightforward as one might suspect. Factors of non-sphericity and size distributions make it impossible to put ‘size’ in just one number. Whereas sieving can be used for coarser particles of a size in excess of about 50 µm, instrumental techniques span a wide size range. For fine particles, the occurrence of cohesive forces needs to be overcome and solvents, dispersants and sample mixing need to be applied. Secondly, the shape of the particles is examined. By defining sphericity, irregularly shaped particles are described. Finally, the density of particles, of particle assemblies and their voidage (volume fraction of voids) and the different ways to investigate them are explored.


2015 ◽  
Vol 15 (6) ◽  
pp. 9405-9443 ◽  
Author(s):  
S. L. Tian ◽  
Y. P. Pan ◽  
Y. S. Wang

Abstract. More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42−, NO3− and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42−, NO3−, NH4+, Cl−, K+ and Cu shifted from 0.43–0.65 μm on non-haze days to 0.65–1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43–0.65 μm, SO42− and NO3− with a size range of 0.65–1.1 μm and Ca2+ with a size range of 5.8–9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2.9%), industrial pollution (6.3 vs. 8.5%) and mineral dust (16.1 vs. 35.1%). The first four factors were higher on haze days, while the latter factors were higher on non-haze days. The sources generally increased with decreasing size with the exception of mineral dust. However, two peaks were consistently found in the fine and coarse particles. The contributing sources also varied with the wind direction; coal and oil combustion products increased during southern flows, indicating that any mitigation strategy should consider the wind pattern, especially during the haze periods. The findings indicated that the PM2.5-based dataset is insufficient for the Chinese source control policy, and detailed size-resolved information is urgently needed to characterize the important sources in urban regions and better understand severe haze pollution.



Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.



Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Dennis Ling Chuan Ching ◽  
Ilyas Khan ◽  
Hamzah Bin Sakidin ◽  
Muhammad Jamil ◽  
...  

AbstractThe present work used fractional model of Casson fluid by utilizing a generalized Fourier’s Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.



2020 ◽  
Vol 500 (3) ◽  
pp. 2979-2985
Author(s):  
Xiaodong Liu ◽  
Jürgen Schmidt

ABSTRACT It is expected since the early 1970s that tenuous dust rings are formed by grains ejected from the Martian moons Phobos and Deimos by impacts of hypervelocity interplanetary projectiles. In this paper, we perform direct numerical integrations of a large number of dust particles originating from Phobos and Deimos. In the numerical simulations, the most relevant forces acting on the dust are included: Martian gravity with spherical harmonics up to fifth degree and fifth order, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the Poynting–Robertson drag. In order to obtain the ring configuration, simulation results of various grain sizes ranging from submicrometres to 100 μm are averaged over a specified initial mass distribution of ejecta. We find that for the Phobos ring grains smaller than about 2 μm are dominant; while the Deimos ring is dominated by dust in the size range of about 5–20 μm. The asymmetries, number densities, and geometric optical depths of the rings are quantified from simulations. The results are compared with the upper limits of the optical depth inferred from Hubble observations. We compare to previous work and discuss the uncertainties of the models.



Author(s):  
Ali J. Chamkha ◽  
A.M. Rashad ◽  
Eisa Al-Meshaiei

This paper considers unsteady, laminar, boundary-layer flow with heat and mass transfer of a nanofluid along a horizontal stretching plate in the presence of a transverse magnetic field, melting and heat generation or absorption effects. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient implicit, iterative, finite-difference method. A parametric study illustrating the influence of various physical parameters is performed. Numerical results for the steady-state velocity, temperature and nanoparticles volume fraction profiles as well as the time histories of the skin-friction coefficient, Nusselt number and the Sherwood number are presented graphically and discussed.



2020 ◽  
Vol 9 (4) ◽  
pp. 362-374
Author(s):  
J. C. Umavathi ◽  
Ali J. Chamkha

Nanotechnology has infiltrated into duct design in parallel with many other fields of mechanical, medical and energy engineering. Motivated by the excellent potential of nanofluids, a subset of materials engineered at the nanoscale, in the present work, a new mathematical model is developed for natural convection in a vertical duct containing nanofluid. Numerical scrutiny for the double-diffusive free and forced convection within a duct encumbered with nanofluid is performed. Buongiorno’s model is deployed to define the nanofluid. Robin boundary conditions are used to define the surface boundary conditions. Thermal and concentration equations envisage the viscous, Brownian motion, thermosphores of the nanofluid, Soret and Dufour effects. Using the Boussi-nesq approximation the solutal buoyancy effect as a result of gradients in concentration are incorporated. The conservation equations which are nonlinear are numerically estimated using fourth order Runge-Kutta methodology and analytically ratifying regular perturbation scheme. The mass, heat, nanoparticle concentration and species concentration fields on eight dimensionless physical parameters such as thermal and mass Grashof numbers, Brownian motion parameter, thermal parameter, Prandtl number, Eckert number, Schmidt parameter, and Soret parameter are calculated. The impact of these parameters are outlined pictorially. The velocity and temperature fields are boosted with the thermal Grashof number. The Soret and the Schemidt parameters reduces the nanoparticle volume fraction but it heightens the momentum, temperature and concentration. At the cold wall thermal and concentration Grashof numbers reduces the Nusselt values but they increase the Nusselt values at the hot wall. The reversal consequence was attained at the hot plate. The perturbation and Runge-Kutta solutions are equal in the nonappearance of Prandtl number. The (E. Zanchini, Int. J. Heat Mass Transfer 41, 3949 (1998)). results are restored for the regular fluid. The heat transfer rate is high for nanofluid when matched with regular fluid.



2005 ◽  
Vol 495-497 ◽  
pp. 609-614
Author(s):  
Michael Ferry

The effect of fine particles on the uniformity of grain coarsening in a submicron grained Al-Sc alloy containing significant local variations in texture has been investigated using high resolution EBSD. The alloy was processed by severe plastic deformation and low temperature ageing to generate a fine-grained (0.8 µm diameter) microstructure containing either a dispersion of nanosized Al3Sc particles or a particle-free matrix. The initial processing generated a uniform grain size distribution, but the distribution of grain orientations was inhomogeneous with the microstructure containing colonies of grains consisting predominantly of either HAGBs or LAGBs with the latter possessing orientation gradients of up to 10 o/µm. Despite the marked differences in boundary character between these regions, the alloy undergoes slow and uniform grain coarsening during annealing at temperatures up to 500 oC with no marked change in the grain size distribution, boundary distribution and texture. A model of grain coarsening that takes into account the influence of fine particles on the kinetics of grain growth within an orientation gradient is outlined. The model predicts that a large volume fraction of fine particles (large f/r-value) tends to homogenize the overall rate of grain coarsening despite the presence of orientation gradients in the microstructure.



Author(s):  
Lachlan Mcleay ◽  
C.G. Alexander

Combining the use of scanning electron microscopy and microcinematography with functional and behavioural observations has clarified many aspects underlying the feeding processes of the small planktonic sergestid shrimp Acetes sibogae australis. In captivity Acetes sibogae australis is an opportunistic feeder that uses four principal feeding modes to capture a wide size range of prey: Artemia nauplii (<0.33 mm), copepods (<1mm) and moribund Acetes (up to 25 mm). Prey capture is effected by combined actions of the first three pairs of pereiopods and the third maxillipeds before transfer to the more dorsal second maxillipeds. The second maxillipeds are the principal appendages used in securing, manipulating, sorting and rejecting prey before insertion into the vicinity of the inner mouthparts.



2019 ◽  
Vol 178 (3) ◽  
pp. 129-134
Author(s):  
Oleh KLYUS ◽  
Paweł KRAUSE ◽  
Vladimir MARKOV ◽  
Anna SKARBEK-ŻABKIN ◽  
Bowen SA

The article presents a method for determining the quality of spraying a mixture of oil and synthetic fuels obtained from the pro-cessing of polymer materials. Laboratory tests of physical parameters of such a mixture were carried out, which made it possible to determine the limit values for the volume fraction of synthetic fuels. The method of determining the suitability of this type of fuel takes into account the criterion numbers Re and Oh, which include physical parameters such as viscosity, density, and surface tension. The experimental part concerning the distribution of droplets of injected fuel and determination of Sauter Mean Diameter using laser diffrac-tion confirmed the usefulness of the developed method for the assessment of the possibility of using a mixture of petroleum-based and synthetic fuels in self-ignition engines.



Sign in / Sign up

Export Citation Format

Share Document