scholarly journals From Disposal to Technological Potential: Reuse of Polypropylene Waste from Industrial Containers as a Polystyrene Impact Modifier

2020 ◽  
Vol 12 (13) ◽  
pp. 5272
Author(s):  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Wallisson Alves da Silva ◽  
Jessika Andrade dos Santos Nogueira ◽  
...  

The practice of recycling over the years has been increasingly encouraged, with the aim being the manufacturing of materials that contribute to sustainable development. In light of this, the present work evaluated the potential of mixtures of polystyrene (PS)/recycled copolymer polypropylene (PPr), using styrene-(ethylene/butylene)-styrene (SEBS) as a compatibilizing agent. Initially, the mixtures were prepared in a co-rotational twin-screw extruder, and, afterwards, the extruded granules were molded by injection. The properties of torque rheometry, impact strength, tensile properties, differential scanning calorimetry (DSC), heat deflection temperature (HDT), and scanning electron microscopy (SEM) were evaluated. The formulation PS/PPr/SEBS (70/20/10 %wt.) demonstrated an increase in viscosity, corroborating with an increase of 123% and 227% in the elongation at break and impact strength, respectively, compared to neat PS. Though the elastic modulus and tensile strength suffered losses, the reduction was not drastic. Furthermore, the addition of a semi-crystalline recycled material in the amorphous matrix (PS) contributed to an increase in thermomechanical strength, as seen in the HDT. The morphology revealed that SEBS is effective in making PS/PPr mixtures compatible because the dispersed phase is well adhered to the PS matrix and promotes greater morphological stability. Thus, it is possible to add value to discarded material and reduce the costs of the final product, which can reduce pollution.

2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


2010 ◽  
Vol 123-125 ◽  
pp. 239-242
Author(s):  
Zi Nian Zhao ◽  
Wen Hua Zhang ◽  
Gang Qiang Lei

By means of melt compounding method, the Glycidyl methacrylate (GMA) grafted HDPE modified Polyamide 66 (PA66) with ultra high molecular weight polyethylene (UHMWPE) blends were prepared via the co-rotating twin screw extruder.The effects of different UHMWPE/HDPE contents on properties of PA66/UHMWPE blends were investigated.Meanwhile, the mechanical properties such as tensile and impact strength etc. were investigated. By using the differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the crystalline and morphology of PA66/UHMWPE blends were analyzed. The results show that UHMWPE toughened PA66 samples exhibit significantly enhanced impact strength and elongation at break comparison with natural PA66. The samples of PA66 with 30% of UHMWPE/HDPE (mass ratio 3/7) blends show impact strength about 2 times and elongation at yield 7 times more than those of natural PA66.The behavior of HDPE-g-GMA shows an effective compatibilizer for PA66/UHMWPE blends, when the mass ratio of PA66/(UHMWPE/HDPE) at 70:30, the blend indicates the best comprehensive property. The investigation on crystallization and morphology of PA66 and their blends show that the behaviors of melting about the two components are independent either PA66 or UHMWPE/HDPE. There are independent melting behaviors, meanwhile, interacted each other between PA66 and UHMWPE. Due to the good compatibility which HDPE-g-GMA contributed, the homogenous PA66/UHMWPE blends could be achieved. The photographs of SEM analysis indicate that the interface action of PA66 and polyethylene is enhanced by compatibilizer HDPE-g-GMA.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Iwona Zarzyka ◽  
Anna Czerniecka-Kubicka ◽  
Karol Hęclik ◽  
Lucjan Dobrowolski ◽  
Marek Pyda ◽  
...  

Purpose: Poly(3-hydroxybutyrate) (P3HB) is a biopolymer, but storing products from P3HB causes the deterioration of their properties leading to their brittleness. P3HB has also low thermal stability. Its melting point almost equals its degradation temperature. To obtain biodegradable and biocompatible materials characterized by higher thermal stability and better strength parameters than the unfilled P3HB, composites with the addition of polyurethanes were produced. Methods: The morphology, thermal, and mechanical property parameters of the biocomposites were examined using scanning electron microscopy, thermogravimetric analysis, standard differential scanning calorimetry, and typical strength machines. Results: Aliphatic polyurethanes, obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycols, were used as modifiers. To check the influence of the glycol molar mass on the properties of the biocomposites, glycols with a molecular weight of 400 and 1000 g/mol were used. New biocomposites based on P3HB were produced with 5, 10, 15, and 20 wt. % content of polyurethane by direct mixing using a twin-screw extruder. The following property parameters of the prepared biocomposites were tested: degradation temperature, glass transition temperature, tensile strength, impact strength, and Brinell hardness. Conclusions: Improvement of the processing property parameters of P3HB-biocomposites with the addition of aliphatic polyurethanes was achieved by increasing the degradation temperature in relation to the degradation temperature of the unfilled P3HB by over 30 °C. The performance property parameters have also been improved by reducing the brittleness compared to the P3HB, as evidenced by the increase in impact strength and the decrease in hardness with an increase in the amount of polyurethane obtained by the reaction of 1,6-hexamethylene diisocyanate and polyethylene glycol with a molecular weight of 400 g/mol (PU400) as modifier.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2021 ◽  
pp. 108201322110692
Author(s):  
Nispa Seetapan ◽  
Bootsrapa Leelawat ◽  
Nattawut Limparyoon ◽  
Rattana Yooberg

Rice noodles have been manufactured in the food industry using different extrusion methods, such as traditional and modern extrusions, which affect the noodle structure and qualities. Therefore, the effects of the extrusion process on qualities of rice noodles using the same blend of rice flour and crosslinked starch were evaluated. In this study, a capillary rheometer was used as an alternative approach to simulate the traditional extrusion method in which the noodles are obtained by continuously pressing the pregelatinized noodle dough through a die. For modern extrusion, a twin-screw extruder was employed to obtain the noodles in a one-step process. The optimal range of moisture content used in the formulation was studied. Upon cooking, the noodles showed a decrease in cooking time and cooking loss with increasing moisture content in the formulation. All cooked noodles showed comparable tensile strength, but those extruded by a twin-screw extruder had substantially greater elongation. Scanning electron micrographs revealed that the noodles prepared using the extruder had a denser starch matrix, while those obtained from a capillary rheometer showed the aggregation of starch fragments relevant to the existence of starch gelatinization endotherm from differential scanning calorimetry. This indicated that the extrusion process using the twin-screw extruder provided a more uniform starch transformation, i.e., more starch granule disruption and gelatinization, thus giving the noodles a more coherent structure and better extensibility after cooking. The obtained results suggested that different thermomechanical processes used in the noodle industry gave the extruded rice noodles different qualities respective to their different microstructures.


2019 ◽  
pp. 089270571988095 ◽  
Author(s):  
Eduardo da Silva Barbosa Ferreira ◽  
Carlos Bruno Barreto Luna ◽  
Edcleide Maria Araújo ◽  
Danilo Diniz Siqueira ◽  
Renate Maria Ramos Wellen

Large waste amounts from wood industries as powder and sawdust are daily produced, and reusing these materials otherwise would be discharged to the environment has become an economically viable and environmentally friendly alternative to produce new materials. Based on these arguments, polypropylene (PP)/Jatobá wood powder composites upon addition of two types of PP were processed in a corotational twin screw extruder; specimens were injected and molded and their characterization was performed through differential scanning calorimetry, thermogravimetry, mechanical properties (impact, tensile, flexural, and hardness), heat deflection temperature (HDT), Vicat softening temperature, and scanning electron microscopy (SEM). Increased elastic modulus, shore D hardness, HDT, and Vicat related to neat PPs were reached. Nevertheless, losses in impact and tensile strength as well as in elongation at break were also verified. These lower data may be associated with the wood agglomeration, as shown in SEM images. Apparently, the investigated properties were not affected by PP viscosities, where both of them presented similar data. Summing up, presented results can be considered commercially feasible, focusing at economic and environmental benefits while producing higher performance products.


2018 ◽  
Vol 773 ◽  
pp. 67-71 ◽  
Author(s):  
Paweesinee Chatkunakasem ◽  
Panisa Luangjuntawong ◽  
Aphiwat Pongwisuthiruchte ◽  
Chuanchom Aumnate ◽  
Pranut Potiyaraj

The objective of this study is to improve high density polyethylene (HDPE) properties for 3D printing by addition of graphene and low density polyethylene (LDPE). Graphene was prepared by modified Hummer’s method. The prepared graphene was characterized by the infrared spectroscopy and the X-ray diffraction analysis (XRD). Graphene/HDPE and LDPE/HDPE composites were successfully prepared through the melt-blending technique using a twin-screw extruder. The melt flow index (MFI) and differential scanning calorimetry (DSC) were employed to characterize neat HDPE and the modified HDPE. FTIR and XRD results show that graphite was successfully changed into graphene completely and MFI of graphene/HDPE and LDPE/HDPE decreased as the amount of graphene and LDPE in the composite blends increased. DSC results show that the addition of low crystalline polymers can reduce a crystallization temperature and crystallinity content.


2012 ◽  
Vol 545 ◽  
pp. 330-334
Author(s):  
Sirirat Wacharawichanant ◽  
Pranee Saetun ◽  
Thunwawon Lekkong ◽  
Thongyai Supakanok

This article investigated the effects of particle size of zinc oxide (ZnO) and polystyrene-co-maleic anhydride (SMA) compatibilizer on impact strength and morphology of polystyrene (PS)/ZnO71 (71 nm) and PS/ZnO250 (250 nm) nanocomposites. PS/ZnO nanocomposites with varying concentration of ZnO and SMA were prepared by a melt mixing technique in a twin screw extruder. It was found that the impact strength of PS nanocomposites increased up to a ZnO content of 1.0 wt%. Moreover, PS/ZnO250 nanocomposites had higher impact strength than PS/ZnO71 nanocomposites. The addition of SMA increased the impact strength of PS/ZnO nanocomposites with increasing SMA content. The result showed that SMA could improve impact strength of nanocomposites. The dispersion of ZnO particles on PS/ZnO nanocomposites was studied by scanning electron microscope (SEM). It was observed that the dispersion of ZnO particles of PS/ZnO nanocomposites without SMA was non-uniform and the agglomeration of ZnO particles in the polymer matrix increased with increasing ZnO content. The dispersion of ZnO particles of PS/ZnO nanocomposites after adding SMA was relatively good and only few aggregations exist. These observations support the results of the impact test where the PS/ZnO nanocomposites with SMA displayed higher impact strength than the PS/ZnO nanocomposites without SMA. The study showed that SMA was used as a compatibilizer to improve the dispersability and compatibility of ZnO particles in PS matrix.


2013 ◽  
Vol 33 (2) ◽  
pp. 111-119
Author(s):  
Yiming Liu ◽  
Qing Liu ◽  
Bing Meng ◽  
Zhihua Wu

Abstract Polycaprolactone (PCL)-coated micro kaolin and nano-titania were prepared by high-speed hybrid mechanical coating. Poly(butylene succinate) (PBS)-coated inorganic particle composites were prepared by the melt-blending process. The influence of coated kaolin microparticles on the dynamic rheological behavior, non-isothermal crystallization behavior, micromorphology, and mechanical behavior were investigated. The effect of coated nano-titania on the mechanical properties of PBS-coated kaolin composites was also studied. A dynamic rheological property indicates that the complex viscosity of PBS-coated kaolin microcomposites is higher than neat PBS. Differential scanning calorimetry (DSC) implies that the micrometric size of kaolin particles restrains the crystallization of PBS. Scanning electronic microscopy (SEM) reveals a well dispersed state of coated kaolin in the polymer matrix. The impact strength of PBS-coated kaolin microcomposites is improved, while the tensile strength and elongation at break is decreased, but still appreciable. The introduction of coated nano-titania improves the impact strength dramatically, and the elongation at break of composites is considerable.


2011 ◽  
Vol 366 ◽  
pp. 310-313
Author(s):  
Ming Tao Run ◽  
Meng Yao ◽  
Bing Tao Xing ◽  
Wen Zhou

The rheology, morphology and mechanical properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by rheometer, scanning electron microscopy, universal tester and impact tester, respectively. The results suggest that the impact strength is improved by the POE acting as a toughening agent, while the compatibility of PA6 and POE is improved by the compatibilizer of PP-g-MAH. Furthermore, the PP-g-MAH component also acts as a reinforcing agent for decreasing the strength depression induced by the POE component. When POE content is about 9 wt% and PP-g-MAH content is about 10% in blends, the blend has the maximum tensile strength and impact strength. All melts of PA6/PP-g-MAH/POE blends are pseudo-plastic fluids. Both the POE and PP-g-MAH components can increase the apparent viscosity of the melt due to their facility of the linear molecular.


Sign in / Sign up

Export Citation Format

Share Document