scholarly journals Adsorption of Heavy Metals on Soil Collected from Lixisol of Typical Karst Areas in the Presence of CaCO3 and Soil Clay and Their Competition Behavior

2020 ◽  
Vol 12 (18) ◽  
pp. 7315
Author(s):  
Guandi He ◽  
Zhenming Zhang ◽  
Xianliang Wu ◽  
Mingyang Cui ◽  
Jiachun Zhang ◽  
...  

The content of heavy metals in the soil in Guizhou Province, which is a high-risk area for heavy metal exposure, is significantly higher than that in other areas in China. Therefore, the objective of this study was to evaluate the ability of CaCO3 and clay to accumulate heavy metals in topsoil sample collected from Lixisol using the method of indoor simulation. The results showed that the contents of Cu, Zn, Cd, Cr, Pb, Hg and As in the soil sample were 10.8 mg/kg, 125 mg/kg, 0.489 mg/kg, 23.5 mg/kg, 22.7 mg/kg, 58.3 mg/kg and 45.4 mg/kg, respectively. The soil pH values increased with the CaCO3 concentration in the soil, and the fluctuation of the soil pH values was weak after the CaCO3 concentrations reached 100 g/kg. The adsorption capacity of lime soil increased by approximately 10 mg/kg on average, and the desorption capacity decreased by approximately 300 mg/kg on average. The desorption of all heavy metals in this study did not change with increasing clay content. Pseudo-second-order kinetics were more suitable for describing the adsorption kinetics of heavy metals on the soil material, as evidenced by the higher R2 value. The Freundlich model can better describe the adsorption process of As on lime soil. The process of As, Cr, Cd and Hg adsorption on the soil sample was spontaneous and entropy-driven. Additionally, the process of Cu and Pb adsorption on the soil materials was spontaneous and enthalpy-driven. Generally, the adsorption and desorption of heavy metals in polluted soil increased and decreased, respectively, with increasing CaCO3 content. The effect of calcium carbonate on the accumulation of heavy metals in soil was greater than that of clay. In summary, CaCO3 and pH values in soil can be appropriately added in several areas polluted by heavy metals to enhance the crop yield and reduce the adsorption of heavy metals in soils.

2020 ◽  
Author(s):  
Fernando Gonçalves ◽  
Daniel G. Streicker ◽  
Mauro Galetti

Nowadays, restoration project might lead to increased public engagement and enthusiasm for biodiversity and is receiving increased media attention in major newspapers, TED talks and the scientific literature. However, empirical research on restoration project is rare, fragmented, and geographically biased and long-term studies that monitor indirect and unexpected effects are needed to support future management decisions especially in the Neotropical area. Changes in animal population dynamics and community composition following species (re)introduction may have unanticipated consequences for a variety of downstream ecosystem processes, including food web structure, predator-prey systems and infectious disease transmission. Recently, an unprecedented study in Brazil showed changes in vampire bat feeding following a rewilding project and further transformed the land-bridge island into a high-risk area for rabies transmission. Due the lessons learned from ongoing project, we present a novel approach on how to anticipate, monitor, and mitigate the vampire bats and rabies in rewilding projects. We pinpoint a series of precautions and the need for long-term monitoring of vampire bats and rabies responses to rewilding projects and highlighted the importance of multidisciplinary teams of scientist and managers focusing on prevention educational program of rabies risk transmitted by bats. In addition, monitoring the relative abundance of vampire bats, considering reproductive control by sterilization and oral vaccines that autonomously transfer among bats would reduce the probability, size and duration of rabies outbreaks. The rewilding assessment framework presented here responds to calls to better integrate the science and practice of rewilding and also could be used for long-term studying of bat-transmitted pathogen in the Neotropical area as the region is considered a geographic hotspots of “missing bat zoonoses”.


1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size < 53μ, was observed to have high adsorption capacity for Hg(II) with >95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


2021 ◽  
Vol 50 (Supplement_1) ◽  
pp. i12-i42
Author(s):  
K Suseeharan ◽  
T Vedutla

Abstract Background The Royal College of Physician guidelines (2011) identified handover as a “high risk step” in patient care, especially in recent times within the NHS where shift patterns lead to more disjointed care with a high reliance on effective handover by all staff members. Introduction At Cannock Chase hospital, Fairoak ward is an elderly care rehabilitation ward where there is a large multi-disciplinary team. While working on the ward as doctors we noticed that handover between the MDT was poor. Anecdotal evidence from both doctors and nurses felt that this was a high risk area in need of improvement. Aim to improve handover between doctors and nurses on this elderly care ward. Method To measure the quality of current handover practice we did a questionnaire. A total of 12 questionnaires were completed which showed that 92% of staff felt that handover on the ward was very poor and 50% preferred both written and verbal handover. We measured the number of tasks verbally handed over between doctors and nurses over 3 days. On average 65% of the tasks were completed. We then made the below interventions and re-audited to see if there was any improvement. Interventions over 3 week period: Results Questionnaire: Measuring task completion after interventions; Conclusion This project has made a positive change qualitatively and quantitatively to the ward handover practice. Staff satisfaction regarding handover has improved and the number of “handed over” tasks completed daily has significantly improved. The written handover sheet had poor utilisation by staff but in 4 months we are going to re-audit and trial the handover sheet again to further improve service delivery. We hope this improvement will have a positive impact on patient care on this elderly care ward.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 855
Author(s):  
Ahmed Amine Azzaz ◽  
Salah Jellali ◽  
Nasser Ben Harharah Hamed ◽  
Atef El Jery ◽  
Lotfi Khezami ◽  
...  

In the present study, methylene blue (MB) removal from aqueous solutions via the photocatalytic process using TiO2 as a catalyst in the presence of external ultra-violet light (UV) was investigated. The results of adsorption in the absence of UV radiation showed that adsorption reached an equilibrium state at 60 min. The experimental kinetic data were found to be well fitted by the pseudo-second-order model. Furthermore, the isotherm study suggested that dye uptake by TiO2 is a chemisorption process with a maximum retention capacity of 34.0 mg/g. The photodegradation of MB was then assessed under various experimental conditions. The related data showed that dye mineralization decreased when dye concentrations were increased and was favored at high pH values and low salt concentrations. The simultaneous presence of organic and inorganic pollution (Zinc) was also evaluated. The effect of the molar ratio Zn2+/MB+ in the solution at different pH values and NaCl concentrations was also monitored. The corresponding experimental results showed that at low values of Zn2+ in the solution (30 mg/L), the kinetic of the MB removal became faster until reaching an optimum at Zn2+/MB+ concentrations of 60/60 mg/L; it then slowed down for higher concentrations. The solutions’ carbon contents were measured during the degradation process and showed total mineralization after about 5 h for the optimal Zn2+/MB+ condition.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e039541
Author(s):  
Jun Ho Ji ◽  
Mi Hyeon Jin ◽  
Jung-Hun Kang ◽  
Soon Il Lee ◽  
Suee Lee ◽  
...  

ObjectivesTo investigate the associations between heavy metal exposure and serum ferritin levels, physical measurements and type 2 diabetes mellitus (DM).DesignA retrospective cohort study.SettingChangwon, the location of this study, is a Korean representative industrial city. Data were obtained from medical check-ups between 2002 and 2018.ParticipantsA total of 34 814 male subjects were included. Of them, 1035 subjects with lead exposure, 200 subjects with cadmium exposure and the 33 579 remaining were assigned to cohort A, cohort B and the control cohort, respectively. Data including personal history of alcohol and smoking, age, height, weight, the follow-up duration, haemoglobin A1c (HbA1c), fasting blood sugar (FBS), ferritin levels, and lead and cadmium levels within 1 year after exposure were collected.Primary outcome measureIn subjects without diabetes, changes in FBS and HbA1c were analysed through repeated tests at intervals of 1 year or longer after the occupational exposure to heavy metals.ResultsIn Cohort A, DM was diagnosed in 33 subjects. There was a significant difference in lead concentrations between the subjects diagnosed with DM and those without DM during the follow-up period (3.94±2.92 mg/dL vs 2.81±2.03 mg/dL, p=0.002). Simple exposure to heavy metals (lead and cadmium) was not associated with DM in Cox regression models (lead exposure (HR) 1.01, 95% CI: 0.58 to 1.77, p 0.971; cadmium exposure HR 1.48, 95% CI: 0.61 to 3.55, p=0.385). Annual changes in FBS according to lead concentration at the beginning of exposure showed a positive correlation (r=0.072, p=0.032).ConclusionOur findings demonstrated that simple occupational exposure to heavy metals lead and cadmium was not associated with the incidence of DM. However, lead concentrations at the beginning of the exposure might be an indicator of DM and glucose elevations.


Sign in / Sign up

Export Citation Format

Share Document