scholarly journals Mechanical Properties and Damage in Lignite under Combined Cyclic Compression and Shear Loading

2020 ◽  
Vol 12 (20) ◽  
pp. 8393
Author(s):  
Haoshuai Wu ◽  
Haibo Bai ◽  
Yanlong Chen ◽  
Hai Pu ◽  
Kai Zhang

In this paper, uniaxial cyclic compression and shear test was carried out for lignite samples. The effects of inclination angle (θ) and upper limit of cyclic stress (σmax) on mechanical properties of coal samples were analyzed, and the damage variables of coal samples were studied based on energy dissipation theory. The results show that the uniaxial compressive strength (UCS) of coal samples after uniaxial cyclic compression and shear tests decreases with the increase of the upper limit of cyclic stress and inclination angle. The shear stress component generated by the increase of inclination angle can effectively reduce the UCS and increase the damage degree of coal samples. With the increase of inclination angle, the failure mode of coal samples is changed from tensile failure (θ = 0°), the combined tensile failure and shear failure (θ = 5°) to shear failure (θ = 10°). The peak axial and radial strain of coal samples first increases rapidly and then stagnates. The peak volume strain rapid increases and then stagnates (θ = 0° and θ = 5°). When the inclination angle is 10°, the peak volume strain first decreases rapidly and then stagnates. Even if the upper limit of cyclic stress is lower than its UCS, it will still promote the propagation of micro cracks and the generation of new cracks and increase the internal damage of coal samples. With the increase of the cycle number, damage variables of coal samples after uniaxial cyclic compression and shear tests nonlinearly increase, and the growth rate decreases gradually.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Chenghua Xu ◽  
Liuyang Li ◽  
Yong Liu

Flaws existing in rock masses are generally unparallel and under three-dimensional stress; however, the mechanical and cracking behaviors of the specimens with two unparallel flaws under triaxial compression have been rarely studied. Therefore, this study conducted comprehensive research on the cracking and coalescence behavior and mechanical properties of specimens with two unparallel flaws under triaxial compression. Triaxial compressive tests were conducted under different confining pressures on rock-like specimens with two preexisting flaws but varying flaw geometries (with respect to the inclination angle of the two unparallel flaws, rock bridge length, and rock bridge inclination angle). Six crack types and eleven coalescence types in the bridge region were observed, and three types of failure modes (tensile failure, shear failure, and tensile-shear failure) were observed in experiments. Test results show that bridge length and bridge inclination angle have an effect on the coalescence pattern, but the influence of bridge inclination angle is larger than that of the bridge length. When the confining pressure is low, coalescence patterns and failure modes of the specimens are greatly affected by flaw geometry, but when confining pressure rose to a certain level, the influence of confining pressure is larger than the effect of flaw geometry. The peak strength of the specimens is affected by flaw geometry and confining pressure. There is a critical value for the bridge length. If the bridge length is larger than the critical value, peak strengths of the samples almost keep constant as the bridge length increases. In addition, as the bridge inclination angle increases, there is an increase in the probability of tensile cracks occurring, and with an increase in the confining pressure, the probability of the occurrence of shear cracks increases.


2003 ◽  
Author(s):  
Akihiro Matsuda

This paper proposes a new numerical model of lead material to predict mechanical properties of isolation and vibration control devices using lead as damping material. Shear and tensile loading tests of lead were carried out to make the numerical model. Shear loading test specimen were constructed from a circumferential lead part welded at the top and bottom to steel flanges. Cyclic stress-strain relations in large strain region were obtained from shear loading test results. The elastic constants and the initial yield stress were given from tensile loading test results. Therefore a numerical model was made using both shear loading and tensile loading test results. Mechanical properties of lead dampers and isolated rubber bearings were simulated using the proposed numerical model via finite element method to show applicability of the model.


2020 ◽  
Vol 12 (3) ◽  
pp. 1029 ◽  
Author(s):  
Liang Chen ◽  
Peng Wu ◽  
Yanlong Chen ◽  
Wei Zhang

The effect of freeze-thaw on the physical-mechanical properties and fracture behavior of rock under combined compression and shear loading was crucial for revealing the instability mechanism and optimizing the structure design of rock engineering in cold regions. However, there were few reports on the failure behavior of rock treated by freeze-thaw under combined compression and shear loading due to the lack of test equipment. In this work, a novel combined compression and shear test (C-CAST) system was introduced to carry out a series of uniaxial compression tests on saturated yellow sandstone under various inclination angles (θ = 0°, 5°, 10°, and 15°) and the number of freeze-thaw cycles (N = 0, 20, 40, and 60). The test results showed that the P-wave velocity dramatically decreased, while the rock quality and porosity increased gradually as N increased; the peak compression strength and elastic modulus obviously decreased with the increasing θ and N, while the peak shear stress increased gradually with the increasing θ and decreased with the increase of N, indicating that the shear stress component can accelerate the crack propagation and reduce its resistance to deformation. The acoustic emission (AE) results revealed that the change of crack initiation (CI) stress and crack damage (CD) stress with the θ and N had a similar trend as that of the peak compression strength and elastic modulus. Particularly, the CI and CD thresholds at 60 cycles were only 81.31% and 84.47% of that at 0° cycle and indicated a serious freeze-thaw damage phenomenon, which was consistent with the results of scanning electron microscopy (SEM) with the appearance of some large-size damage cracks. The fracture mode of sandstone was dependent on the inclination angle. The failure mode developed from both the tensile mode (0°) and combined tensile-shear mode (5°) to a pure shear failure (10°–15°) with the increasing inclination angle. Meanwhile, the freeze-thaw cycle only had an obvious effect on the failure mode of the specimen at a 5° inclination. Finally, a novel multivariate regression analysis method was used to predict the peak compression strength and elastic modulus based on the initial strength parameters (θ = 0°, N = 0). The study results can provide an important reference for the engineering design of rock subjected to a complex stress environment in cold regions.


2020 ◽  
Vol 12 (3) ◽  
pp. 1255 ◽  
Author(s):  
Liang Chen ◽  
Xianbiao Mao ◽  
Peng Wu

Comprehensive understanding of the effects of temperature and inclination angle on mechanical properties and fracture modes of rock is essential for the design of rock engineering under complex loads, such as the construction of nuclear waste repository, geothermal energy development and stability assessment of deep pillar. In this paper, a novel inclined uniaxial compression (inclined UCS) test system was introduced to carry out two series of inclined uniaxial compression tests on granite specimens under various inclination angles (0–20°) and treated temperatures (25–800 °C) at 5° inclination. Experimental results revealed that the peak compression stress and elastic modulus gradually decreased, while peak shear stress increased nonlinearly with the increasing inclination angle; the peak compression and shear stress as well as elastic modulus slightly increased from 25 to 200 °C, then gradually decreased onwards with the increasing temperature. The effect of temperature on peak axial strain was the same as that on peak shear displacement. Acoustic emission (AE) results suggested that the relationship between crack initiation stress, inclination angle and treated temperature followed a similar trend as that of the peak compression stress and elastic modulus. Particularly, the crack initiation (CI) stress threshold and shear stress corresponding to CI threshold under 800 °C were only 7.4% of that under 200 °C and revealed a severe heat damage phenomenon, which was consistent with the results of the scanning electron microscopy (SEM) with the appearance of a large number of thermal pores observed only under 800 °C. The failure modes tended to shear failure with the increasing inclination angle, indicating that the shear stress component can accelerate sliding instability of rocks. On the other hand, the failure patterns with different temperatures changed from combined splitting-shear failure (25–400 °C) to single shear failure (600 and 800 °C). The study results can provide an extremely important reference for underground thermal engineering construction under complex loading environment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yue Cao ◽  
Jinhai Xu ◽  
Liang Chen ◽  
Peng Wu ◽  
Faiz Shaikh

AbstractOne element that is essential to consider in underground mining engineering applications is the possibility of pillar failure, which can result in deadly geological disasters, including earthquakes and surface subsidence. Pillars are commonly present under an inclined state and are significantly dependent upon combined compression and shear loading. However, many scholars regard the pure uniaxial compression strength (UCS) of rock as the main evaluation index of pillar strength, which is inconsistent with the field practice. Hence, the present study developed a novel combined compression and shear test (C-CAST) system, which was applied in the investigative acoustic emission (AE) experiments to characterize the failure mechanism and micro-fracture behavior of granite specimens at different inclination angles. The experimental results presented the exponential decrease of UCS of inclined specimens with increase in the shear stress component. Changes in the inclination angle with a range of 0°–10° produced a splitting-shear failure fracture mode from the initial splitting failure. In comparison, an increase in the inclination angle from 10° to 20° produced a single shear failure fracture mode from the initial combined splitting-shear failure. The specimens exhibited nonlinearly reduced microcrack initiation (CI) and damage (CD) thresholds following an increase in the inclination angle, suggesting the dependence of the microcrack initiation and propagation on the shear stress component. The ratio of CI and CD thresholds to inclined UCS varies within a certain range, indicating that the ratio may be an inherent property of granite specimens and is not affected by external load conditions. Additionally, the rock fracture behavior was largely dependent upon the mechanism of shear stress component, as validated by the microcrack initiation and growth. Finally, a modified empirical formula for pillar strength is proposed to investigate the actual strength of inclined pillar. Results of a case study show that the modified formula can be better used to evaluate the stability of inclined pillars.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3693
Author(s):  
Faxin Li ◽  
Dawei Yin ◽  
Chun Zhu ◽  
Feng Wang ◽  
Ning Jiang ◽  
...  

In this investigation, six groups of cemented coal gangue-fly ash backfill (CGFB) samples with varying amounts of kaolin (0, 10, 20, 30, 40, and 50%) instead of cement are prepared, and their mechanical properties are analyzed using uniaxial compression, acoustic emission, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The uniaxial compressive strength, peak strain, and elastic modulus of CGFB samples decreased with the kaolin content. The average uniaxial compressive strength, elastic modulus, and peak strain of CGFB samples with 10% amount of kaolin are close to that of CGFB samples with no kaolin. The contribution of kaolin hydration to the strength of CGFB sample is lower than that of cement hydration, and the hydration products such as ettringite and calcium-silicate-hydrate gel decrease, thereby reducing strength, which mainly plays a role in filling pores. The contents of kaolin affect the failure characteristics of CGFB samples, which show tensile failure accompanied by local shear failure, and the failure degree increases with the kaolin content. The porosity of the fracture surface shows a decreasing trend as a whole. When the amount of kaolin instead of cement is 10%, the mechanical properties of CGFB samples are slightly different from those of CGFB samples without kaolin, and CGFB can meet the demand of filling strength. The research results provide a theoretical basis for the application of kaolin admixture in fill mining.


2019 ◽  
Vol 9 (16) ◽  
pp. 3234 ◽  
Author(s):  
Jinquan Xing ◽  
Cheng Zhao ◽  
Songbo Yu ◽  
Hiroshi Matsuda ◽  
Chuangchuang Ma

In order to study the mechanical characteristics and cracking behavior of jointed rock mass under hydro-mechanical coupling, a series of uniaxial compression tests and triaxial compression tests were carried out on cylinder gypsum specimens with a single pre-existing flaw. Under different confining pressures, water pressure was injected on the pre-existing flaw surface through a water injection channel. The geometrical morphology and tensile or shear properties of the cracks were determined by X-ray computed tomography (CT) and scanning electron microscope (SEM). Based on the macro and micro observation, nine types of cracks that caused the specimen failure are summarized. The results of mechanical properties and crack behavior showed that the confining pressure inhibited the tensile cracks, and shear failure occurred under high confining pressure. The water pressure facilitated the initiation and extension of tensile crack, which made the specimens prone to tensile failure. However, under the condition of high confining pressure and low water pressure, the lubrication effect had a significant effect on the failure pattern, under which the specimens were prone to shear failure. This experimental research on mechanical properties and cracking behavior under hydro-mechanical coupling is expected to increase its fundamental understanding.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Genwei Li ◽  
Shuaifeng Lu ◽  
Sifei Liu ◽  
Jing Liu ◽  
Peng Shi ◽  
...  

In order to evaluate the coal pillar stability in recovery of residual room pillars under different mining rates, this paper studies the influence of loading rate on the mechanical properties of the coal body. The uniaxial compression tests of coal samples in Yangcheng area at different loading rates were carried out with the MTS815 electrohydraulic servo rock mechanics test system. The stress-strain curves and the evolution characteristics of AE signals were analyzed. At same time, the mechanism of damage and failure of specimens are also discussed. The results show the following. (1) With the increase in loading rate, the ultimate stress and ultimate strain of specimens decrease first and then increase. (2) Loading rate has a significant effect on the stability adjustment of specimens. With the decrease in loading rate, the earlier the stress adjustment is, the larger the adjustment range is, and the failure mode changes from shear failure to tensile failure. (3) In addition, when the loading rate increases, the AE evolves from continuous dense to discrete catastrophe, which indicates that the failure of the sample at a larger loading rate is sudden, which is not conducive to the maintenance of the stability of the coal pillar. (4) Finally, the failure mechanism of the specimen structure under different loading rates is obtained, and the improvement measures for the effect of mining velocity of working face on the stability of coal pillar are put forward. The results reveal the loading rate effect of mechanical properties of coal and provide a reference for controlling the stability of the residual coal pillar.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


Sign in / Sign up

Export Citation Format

Share Document