scholarly journals Vegetated Ditch Habitats Provide Net Nitrogen Sink and Phosphorus Storage Capacity in Agricultural Drainage Networks Despite Senescent Plant Leaching

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 875
Author(s):  
Jason Taylor ◽  
Matthew Moore ◽  
Shannon L. Speir ◽  
Sam Testa

The utility of vegetated ditch environments as nutrient sinks in agricultural watersheds is dependent in part on biogeochemical transformations that control plant uptake and release during decomposition. We investigated nitrogen (N) and phosphorus (P) uptake and release across four P enrichment treatments in ditch mesocosms planted with rice cutgrass (Leersia oryzoides) during the summer growing and winter decomposition seasons. Measured N retention and modeled denitrification rates did not vary, but P retention significantly increased with P enrichment. At the end of the growing season, root biomass stored significantly more N and P than aboveground stem and leaf biomass. Decomposition rates were low (<10% organic matter loss) and not affected by P enrichment. Nitrogen and P export during winter did not vary across the P enrichment gradient. Export accounted for <10% of observed summer N uptake (1363 mg m−2), with denitrification potentially accounting for at least 40% of retained N. In contrast, net P retention was dependent on enrichment; in unenriched mesocosms, P uptake and release were balanced (only 25% net retention), whereas net retention increased from 77% to 88% with increasing P enrichment. Our results indicate that vegetated ditch environments have significant potential to serve as denitrification sinks, while also storing excess P in agricultural watersheds.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 15-41 ◽  
Author(s):  
G v R Marais ◽  
R E Loewenthal ◽  
I P Siebritz

The paper briefly reviews the development of the biological excess removal of phosphorus in the activated sludge process, from 1959 when it was first observed to the present. It concludes by proposing, tentatively, a biochemical mechanism whereby excess P uptake and release can be explained.


1997 ◽  
Vol 122 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Wei Qiang Yang ◽  
Barbara L. Goulart

Aluminum (Al) and phosphorus (P) interactions were investigated in mycorrhizal (M) and nonmycorrhizal (NM) highbush blueberry (Vaccinium corymbosum L.) plantlets in a factorial experiment. The toxic effects of Al on highbush blueberry were characterized by decreased shoot, root, and total plant dry mass. Many of the negative effects of Al on plant root, shoot, and total dry matter production were reversed by foliar P and N application, indicating P or N uptake were limited by high Al concentration. However, Al-mediated growth reduction in P-stressed plants indicated that the restriction of P uptake by high Al may not have been the only mechanism for Al toxicity in this experiment. Root Al and P concentration were negatively correlated in NM but not M plantlets, suggesting mycorrhizal infection may alter P uptake processes. Al uptake was also affected by mycorrhizal infection, with more Al accumulating in M plantlet roots and leaves. Correlations among foliar ion concentrations were also affected by mycorrhizal fungal infection.


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


2020 ◽  
Vol 18 (1) ◽  
pp. 1-7
Author(s):  
Kasmadi Kasmadi ◽  
Budi Nugroho ◽  
Atang Sutandi ◽  
Syaiful Anwar

Filter pressmud is the waste most considered to pollute the environment and is a problem for sugar factories and the community.  There is also an opinion that filter pressmud is worthless waste and considered as B3 waste.  Filter pressmud is an organic material with abundant and has not been used optimally.  Filter pressmud contains nutrients that are needed by plants, so it is very good for increasing the composition of nutrients in granule compound fertilizer.  The objectives to be achieved in this study are: to examine the effect of the addition of filter pressmud on the production process of granule compound fertilizer on plant nutrient uptake.  The results obtained, the addition of filler blotong 60% -90% in the treatment using SOP can increase N uptake by 84.93-384.18 mg, P uptake of 2.65-11.62 mg, and K uptake of 25.04-  82.38 mg.  Whereas the treatment using KCl had a positive influence on the addition of filler filter pressmud by 70%, with an increase in N, P and K nutrient uptake of 45.62 mg, 3.87 mg and 4.89 mg, respectively


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 765 ◽  
Author(s):  
Latati ◽  
Dokukin ◽  
Aouiche ◽  
Rebouh ◽  
Takouachet ◽  
...  

Little is known about how the performance of legumes symbiosis affects biomass and nutrient accumulation by intercropped cereals under the field condition. To assess the agricultural services of an intercropping system; durum wheat (Triticum turgidum durum L.cv. VITRON) and chickpea (Cicer arietinum L.cv. FLIP 90/13 C) were cultivated as both intercrops and sole cropping during two growing seasons under the field trial, to compare plant biomass, nodulation, N and phosphorus (P) uptake, and N nutrition index. Both the above-ground biomass and grain yield and consequently, the amount of N taken up by intercropped durum wheat increased significantly (44%, 48%, and 30%, respectively) compared with sole cropping during the two seasons. However, intercropping decreased P uptake by both durum wheat and chickpea. The efficiency in use of rhizobial symbiosis (EURS) for intercropped chickpea was significantly higher than for chickpea grown as sole cropping. The intercropped chickpea considerably increased N (49%) and P (75%) availability in durum wheat rhizosphere. In the case of chickpea shoot, the N nutrition (defined by the ratio between actual and critical N uptake by crop) and acquisition were higher in intercropping during only the first year of cropping. Moreover, biomass, grin yield, and resource (N and P) use efficiency were significantly improved, as indicated by higher land equivalent ratio (LER > 1) in intercropping over sole cropping treatments. Our findings suggest that change in the intercropped chickpea rhizosphere-induced parameters facilitated P and N uptake, above-ground biomass, grain yield, and land use efficiency for wheat crop.


2004 ◽  
Vol 55 (1) ◽  
pp. 25 ◽  
Author(s):  
K. Snars ◽  
J. C. Hughes ◽  
R. J. Gilkes

The chemical properties of red mud, a byproduct of Bayer process refining of bauxite to alumina, make disposal of the material problematic. It is very alkaline (pH > 11), contains a large amount of sesquioxides, and thus has a very high P retention capacity. These characteristics have encouraged its use as a soil amendment to enhance P retention in sandy soils. A glasshouse experiment was carried out to investigate the effect of red mud on plant-available P. Leached red mud (LRM) (pH 7.24) was mixed at rates of 0, 5, 10, and 20 t/ha with a very sandy soil, provided with a full basal fertiliser and various rates of phosphate, and then sown with perennial ryegrass. Five harvests were obtained over a period of 245 days. At the end of the experiment the highest rate of addition of LRM gave an increase in soil pH of less than one unit and the electrical conductivity had not changed substantially or systematically. Bicarbonate-extractable P (bic-P) had decreased considerably from the initial values. However, there were no significant differences between bic-P values at the different levels of red mud application for the same rate of P application. Plant yield was not significantly different between treatments. Addition of red mud (a) decreased the P concentration of plants for the same amount of P applied; and (b) required a larger amount of bic-P to maintain a constant level of P in the plant. The red mud had adsorbed both applied and existing P and reduced the plant availability of bic-P. The economic impact of these processes needs evaluation.


2015 ◽  
Vol 31 (6) ◽  
pp. 507-515 ◽  
Author(s):  
Aime Jean Messiga ◽  
Mehdi Sharifi ◽  
Sheena Munroe

AbstractImproved farming practices are needed to produce more food in a sustainable way. This study assessed 12 combinations of cover crop mixtures and amendment treatments and their effects on shoot and root dry (matter (DM) weights, nitrogen (N), phosphorus (P) and potassium (K) uptakes in plants, Mehlich-3 extractable P (PM3) and K (KM3). Shoot and root DM weights were increased by 30–63% with combinations of clover-based cover crop mixtures and 65 Mg ha−1of municipal solid food waste (MSFW) compared with synthetic fertilizer. The combination of clover-based cover crop mixtures with MSFW increased N uptake by 38 and 30%, P uptake by 57 and 40% and K uptake by 77 and 77% compared with fertilized and unfertilized treatments, respectively. The combination of vetch-based cover crop mixtures with MSFW had no effect on N uptake, but increased P uptake on average by 43%, and K uptake on average by 11% compared with fertilized and unfertilized treatments. The highest soil PM3and KM3values were obtained with additions of MSFW, while the lowest were obtained with synthetic fertilizer indicating that the amount of P and K added with MSFW were greater than cover crop needs. Combining cover crop mixtures and MSFW at levels recommended for N fertilization allows meeting cover crops’ nutrient needs and increases biomass inputs to agricultural soils, but long-term monitoring of soil P is required to limit potential P build-up.


2019 ◽  
Vol 13 (1) ◽  
pp. 133-145
Author(s):  
Mohammed Al-Chammaa ◽  
Farid Al-Ain ◽  
Fawaz Kurdali

Background: During the freezing or canning preparation process of green grain leguminous, large amounts of shell pods are considered as agricultural organic wastes, which may be used as Green Manure (GM) for plant growth enhancement. Objective: Evaluation of the effectiveness of soil amended with shell pod wastes of pea (PGM) or faba bean (FGM) as GM on growth, nitrogen and phosphorus uptake in sorghum plants. Methods: Determination of the impact of adding four rates of nitrogen (0, 50, 100, and 150 kg N ha-1) in the form of pea (PGM) or faba bean (FGM) shell pod wastes as GM on the performance of sorghum using the indirect 15N isotopic dilution technique. Results: Sorghum plants responded positively and differently to the soil amendments with either GMs used, particularly, the PGM. In comparison with the control (N0), soil amendment with an equivalent rate of 3.5 t ha-1 of PGM (PGM100) or with 6.5 t ha-1 of FGM (FGM150) almost doubled dry weight, N and P uptake in different plant parts of sorghum. Regardless of the GM used, estimated values of %Ndfgm in sorghum plants ranged from 35% to 55% indicating that the use of pod shells as GM provided substantial portions and amounts of N requirements for sorghum. Moreover, nitrogen recoveries of added GM (%NUEgm) ranged from 29 to 45% indicating that N in both of GM forms were used effectively. Accordingly, equivalent amounts to 17 - 48 kg N ha-1 of inorganic fertilizer may be saved. The beneficial effect of incorporating pod shells in soil on sorghum N was mainly attributed to their N availability, besides to their effects on the improvement of soil N uptake, particularly when using PGM. Conclusion: The agricultural by-products of faba bean and pea pod shells could be used as GM for sorghum growth improvement by enhancing N and P uptake from soil and from the organic source.


2020 ◽  
Vol 47 (8) ◽  
pp. 769
Author(s):  
Thibaut Verdenal ◽  
Jorge E. Spangenberg ◽  
Vivian Zufferey ◽  
Ágnes Dienes-Nagy ◽  
Olivier Viret ◽  
...  

Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5–2.5 kg m–2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.


Sign in / Sign up

Export Citation Format

Share Document