scholarly journals Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2146
Author(s):  
Warit Charoenlerkthawin ◽  
Matharit Namsai ◽  
Komkrit Bidorn ◽  
Chaipant Rukvichai ◽  
Balamurugan Panneerselvam ◽  
...  

The Wang River is one of the major tributaries of the Chao Phraya River (CPR) system in Thailand as the key riverine sediment source supplying the Chao Phraya Delta that has experienced severe shoreline retreat in the past six decades. Historical and observed river flow and sediment data measured during 1929–2019 were used to assess the variation in total sediment load along the Wang River and evaluate the effects of three major dam constructions on sediment supplied from the Wang River to the CPR. Results indicated that sediment loads increased toward downstream. Variation in long-term total sediment load (TSL) along the river suggested that construction of the Kiew Lom Dam in 1972 did not cause a reduction in sediment yield in the Wang River Basin because it impounded less than 20% of the average annual runoff, while the Mae Chang and Kiew Koh Ma Dams caused downstream sediment reduction. These three dams are located in the upper and middle river basins, and their effects on sediment load in the Wang River are ameliorated by additional sediment supplied from the lower basin. Results confirmed that construction of these three major dams in the Wang River did not greatly impact sediment supply from the Wang River to the CPR system. The dam site and sediment load variation along the river are the primary factors controlling the impact of the dam construction.

Author(s):  
N. I. Koronkevich ◽  
K. S. Melnik

Global urban landscapes were growing rapidly during last decades. The impact of this growth on annual river runoff of foreign European and Russian river basins was shown in this article. Calculations for Moscow river basin were taken as a basis for computations. The performed calculations show, that 1% of urbanization area increase also enhances total river runoff at 1%. At the same time 1% growth of watertight territories (included in urbanized landscapes) leads to an increase in runoff by 2–3%. The growth of urbanized areas led to a smaller increase in runoff (2–3 times) in the past (in comparison with current period) due to a less established system of diversion from urbanized landscapes. Calculations were made for Spree, Thames, Seine river basins in comparison Moscow River basin. Impact of capitals landscapes (Berlin, London, Paris, and Moscow) on river runoff was estimated initially, and then the influence of other urbanized areas located in river basins. As a result, the general influence of all urbanized territories was defined. According to results of conducted calculations, modern urbanized areas led to an increase of annual river runoff by more than 9% in Spree river basin, more than 20% of the Thames, over 11% of the Seine and 10% in the basin of Moscow River in comparison with changes during the period of norm calculation (from the end of 19th century till the beginning of the 1960s of the 20th century). According to the results of conducted calculations, modern total annual runoff increase is 2.2–4.5% for Europe and 0.2–0.3% for the Russian Federation in comparison with changes during the period of norm calculation, and in relation to the runoff from the most populated their parts is 3.5-6.9% and 1-2%, respectively. In addition, it can be expressed in km3 with following values: 44.9–89.8 (for foreign Europe) and 7.2–14.3 (for the Russian Federation). For the whole Europe (including European territory of Russia), the runoff increases by 50–100 km3 (or by 2–4%) per year. Actually, this is not so much in percentage terms, though in terms of volume – these values are close to annual runoff of such river as Neva.


2020 ◽  
Author(s):  
Rongrong Li

<p>The hydrological series can no longer meet the stationarity hypothesis due to the influence of climate variability and human activities. The process of runoff and sediment load changed significantly under a changing environment. Analyzing the variations of runoff and sediment load and exploring the main influencing causes leading to their changes will be of great help to understand the dynamic process of water and sediment in river basin. Many studies have considered the effects of rainfall and reservoir on the downstream runoff or sediment: the impact of rainfall on runoff or sediment load is normally performed by comparing the statistical characteristics before and after an extreme weather event (e.g. heavy rain of the Yangtze river in 1998); the effect of reservoirs is usually determined by comparing the pre-dam and post-dam frequencies of runoff or sediment load. In this study, the major influencing factors of annual runoff and sediment load in Wujiang River basin were identified firstly based on the results of trend analysis and change-point diagnosis for runoff and sediment load. Then, Generalized Addictive Models in Location, Scale, and Shape (GAMLSS) is used to describe the rainfall and reservoir impacts on nonstationarity of runoff and sediment load, in which, distribution parameters (including the location, scale and shape parameter) are expressed as a function of the explanatory variables. The results show that: (1) runoff and sediment load of Wujiang River decrease with the intensification of climate change and human activities; (2) runoff is mainly affected by rainfall, the operation of cascade reservoirs has critical effect on the sediment load; (3) the correlation between runoff and sediment closely related to the nonstationarity of sediment load, namely, the sediment load change can directly lead to the alteration of dependence between runoff and sediment.</p>


ASJ. ◽  
2021 ◽  
Vol 1 (48) ◽  
pp. 24-35
Author(s):  
T. Burenina ◽  
A. Onuchin

This article discusses the spatial and temporal aspects of hydrological processes in catchments after logging for different landscape conditions of Central Siberia. For this discussion, the results of our own research in the Sayan Mountains, the Yenisei Ridge, the Angara River basin, the Khamar-Daban ridge and literature data were involved. It analyzed the impact of felling area to change the river flow and development of the erosion at the catchment area. The annual runoff, its seasonal structure and sediment discharge change significantly in dependence on as area of clearcutting so area of river basin. The authors analyzed the results of observations of the restoration of the water balance in the experimental logging sites of small catchments and the dynamics of runoff in large rivers. Research has shown the vegetation cover structure changes continuously on logged sites during post-logging forest regeneration and future post-cutting hydrologic regime scenarios are determined both by further climatic changes and by vegetation succession trajectories. The role of the time as a factor to decrease erosion at watershed after logging depends of many regional and local features of landscapes and of initial soil mineralized by logging. For the forests of Khamar-Daban mountainous in Baikal basin the model of soil erosion at watersheds after logging was developed.  


2021 ◽  
Vol 13 (2) ◽  
pp. 443
Author(s):  
Min Du ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
Wenyi Sun

The loessial tableland is a unique landform type on the Loess Plateau in China. Long-term soil erosion has led to the retreat of gullies and the rapid reduction of fertile arable land, which has further decreased agricultural production. In this study, we chose the Malian River basin to analyze the temporal and spatial variation of its runoff and sediment load, as well as the potential causes. The annual runoff and sediment load at six hydrological stations in the study area were collected for the period between 1960 and 2016. The Mann−Kendall and Pettitt tests were respectively applied to detect temporal variations and abrupt changes in the runoff and sediment loads. The results showed that an abrupt change in the runoff and sediment loads occurred in 2003. The average annual runoff in the Malian River was 4.42 × 108 m3 yr−1 from 1960 to 2002, and decreased to 3.32 × 108 m3 yr−1 in 2003–2016. The average annual sediment load was 1.27 × 108 t yr−1 in 1960–2002, and decreased to 0.65 × 108 t yr−1 in 2003–2016. The spatial patterns in the sediment load suggested that the Hongde sub-basin contributed a higher sediment count to the Malian River, which may require additional attention for soil and water conservation in the future. Anthropogenic activities significantly affected runoff and sediment load reduction according to the double-mass curve method, accounting for 90.7% and 78.7%, respectively, whereas rainfall changes were 9.3% and 21.3%, respectively. As such, the present study analyzed the loessial tableland runoff and sediment load characteristics of the Malian River basin for soil and water erosion management.


Author(s):  
Yiting Shao ◽  
Xingmin Mu ◽  
Yi He ◽  
Kai Chen

Investigation of the variations in runoff and sediment load as well as their dynamic relation is conducive to understanding hydrological regimes changes and supporting channel regulation and fluvial management. This study was undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load and their relationship at multi-temporal scales from 1966 to 2016. The results showed that the monthly runoff changed significantly for more months whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. The annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (P<0.05) with significant mutation in 1993 (P<0.05). The average annual runoff in the change period (1994-2016) decreased by 49.60% and annual sediment load displayed a substantial decline with a reduction of 77.76% in comparison with the reference period (1966-1993). The variation of the relationship between runoff and sediment load in the catchment was time-dependent. The annual and extreme monthly runoff-sediment relationship could be generally expressed as power function, whereas the monthly runoff-sediment relationships were changeable. Spatially, the relationship between annual runoff and sediment load could be partly attributed to sediment load changes in the upstream and runoff variations in the downstream and it became weaker in the change period due to the impact of existing soil and water conservation measures. Quantitative assessment showed that human activity played a dominant role in annual runoff and sediment load reduction, with the contributions of 67.07% and 87.64%, respectively.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Matharit Namsai ◽  
Warit Charoenlerkthawin ◽  
Supakorn Sirapojanakul ◽  
William C. Burnett ◽  
Butsawan Bidorn

The Bhumibol Dam on Ping River, Thailand, was constructed in 1964 to provide water for irrigation, hydroelectric power generation, flood mitigation, fisheries, and saltwater intrusion control to the Great Chao Phraya River basin. Many studies, carried out near the basin outlet, have suggested that the dam impounds significant sediment, resulting in shoreline retreat of the Chao Phraya Delta. In this study, the impact of damming on the sediment regime is analyzed through the sediment variation along the Ping River. The results show that the Ping River drains a mountainous region, with sediment mainly transported in suspension in the upper and middle reaches. By contrast, sediment is mostly transported as bedload in the lower basin. Variation of long-term total sediment flux data suggests that, while the Bhumibol Dam does effectively trap sediment, there was only a 5% reduction in sediment supply to the Chao Phraya River system because of sediment additions downstream.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2017 ◽  
Vol 10 (1-2) ◽  
pp. 11-21 ◽  
Author(s):  
Swades Pal ◽  
Indrajit Mandal

AbstractDwarka River basin (3882.71 km2) of Eastern India in the Chotonagpur Plateau and Gangetic Plain is highly affected by stone mining and crushing generated dust. In the middle catchment of this basin, there are 239 stone mines and 982 stone crushing units. These produce approximately 258120 tons of dust every year and this dust enters into the river and coats the leaves of plants. On the one hand, this is aggrading in the stream bed, increasing sediment load, decreasing water quality, specifically increasing total dissolved solid, pH, water colour, and it also degrades the vegetation quality. Vegetation quality is also degraded as indicated by decreasing of NDVI values (maximum NDVI in 1990 was 0.70 and in 2016 it was 0.48). Considering all these issues, the present paper intends to identify dust vulnerable zones based on six major driving parameters and the impact of the dust on river morphology, water quality and vegetation quality in different vulnerable zones. Weighted linear combination method (in Arc Gis environment) is used for compositing the selected parameters and deriving vulnerable zones. Weight to the each parameter is assigned based on analytic hierarchy process, a semi quantitative method. According to the results, 579.64 km2(14.93%) of the catchment area is very highly vulnerable: Here 581 rivers have a length of 713 km and these riversare prone to high dust deposition, increased sediment load and water quality deterioration.


2021 ◽  
Author(s):  
Gabriela Adina Morosanu ◽  
Marta Cristina Jurchescu

&lt;p&gt;The key to an efficient basin management, taking into account both the liquid (river water runoff and its quality) and the solid (sediment sources and delivery) components lies in the way we approach the complex problem of sediment-generating areas in a river basin. This complexity is manifested both through the primary geomorphological processes that contribute to the mobilization of significant amounts of alluvia from the slopes and along the river valleys, and the various environmental and anthropogenic factors that act as restrictors or catalysts of sediment transfer.&lt;/p&gt;&lt;p&gt;In the present study, we aim to analyze the various categories of anthropogenic factors, operating at different spatial scales (local or at subcatchment/river sector level), which contribute, together with the intrinsic geomorphological potential, to the sediment supply or, conversely, to the inhibition of erosion, transport and accumulation processes.&lt;/p&gt;&lt;p&gt;Tracking sediment mobilization, transfer, intermediate storage and final delivery in a lithologically and geomorphologically complex environment, such as the Jiu River Basin (10,070 km&lt;sup&gt;2&lt;/sup&gt;), located in SW Romania, is a difficult task which can become even more challenging when we factor in the contribution of some additional elements of an anthropic nature. In our study area, represented by a Carpathian and Danubian river basin, some of the most significant issues impacting the research include, on the one hand, the existence of reservoirs and dams, the strengthening of anti-flood embankments or the presence of water diversions, to cite only hydrotechnical interventions, or the impact of coal mining on landforms, slope processes and sediment sources, on the other hand. &amp;#160;All these factors can act locally or regionally and they can surpass the influence exerted by the natural factors, thus being responsible for the reduction, storage, or, on the contrary, for the acceleration of specific hydro-sedimentary fluxes on certain paths.&lt;/p&gt;&lt;p&gt;In order to connect these two categories of potential factors regulating sediment generation and transfer, the methodological approach consists in evaluating the internal &amp;#8211; geomorphic upstream-downstream connectivity in relation/contrast with the disruptive anthropogenic factors. The proposed workflow can be divided in two steps: 1) the identification of the upstream sediment generating areas which are most connected to the downstream delivery/ storage/ accumulation areas (river network and river mouth) by applying the connectivity index (IC) proposed by Cavalli et al. (2013); and 2) the evaluation of potential hotspot areas exhibiting the highest degree of connectivity, as seen through the lens of the additional coupling or decoupling effects induced by the anthropic activities specific to the Jiu river basin: hydraulic structures and coal mining.&lt;/p&gt;&lt;p&gt;Outcome discussions will focus on mapping problematic sediment production, storage and transfer sectors, as evidenced by the impact of hydrotechnical works and artificial landforms from coal mining on the connectivity potential of the Jiu river basin.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document