Immune disorders in the recuperation period. Justification of the Immunomax use

2020 ◽  
pp. 14-20
Author(s):  
O.A. Gizinger

Impaired functioning of the immune system against the background of viral and bacterial diseases contributes to the generalization of inflammatory processes, the development of complications, and asthenia. Immunomax is the recommended preparation for correcting immune disorders. The active ingredient is Acid Peptidoglycan from Potato Sprouts with a molecular weight of 1000-40,000 kD; Registration number: P N001919 / 02. Immunomax® stimulates the expression of genes of signaling receptors of immunity, which increases their sensitivity of immunocytes to pathogens of different nature and causes an adequate immune response in the body in the presence of the pathogen.

2015 ◽  
Vol 6 (2) ◽  
pp. 96-108
Author(s):  
Elena Aleksandrovna Dementeva ◽  
Olga Petrovna Gurina

The key immunology problem remains the understanding of the mechanisms for the effective protection of the body against various pathogens with simultaneous suppression of the immune response to autoantigens. The pathogenesis of neoplastic pathological processes includes violations of the mechanisms of normal cell growth and cell proliferation. Antitumor immune response is a complex event, involving many different cell types. But despite the ability of the immune system to recognize and respond to a variety of tumor-associated antigens, the neoplastic process overcomes the protective forces of the organism, grows and spreads. For cancer cells characterized by independence from antiproliferative signals, autocrine stimulation of growth disturbances in the system, induction of apoptosis and control of genome stability. As a result of accumulation of genetic and epigenetic changes in tumor cells differ significantly from the normal range and the level of expression of genes involved in the transformation process, the accumulation of mutations in key genes promoters and suppressors of tumorigenesis. This creates the opportunity for recognition by cells of the immune system. The study of changes in value and operation of the various elements of the immune system in the development of experimental neoplastic process allows you to identify the mechanisms of interaction in the system «malignant tumor-immune system, to assess patterns of interaction with other organs and tissues, to create a theoretical pathogenetically reasonable premise for the development of anticancer therapy.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 468
Author(s):  
Antonella Di Sotto ◽  
Annabella Vitalone ◽  
Silvia Di Giacomo

Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.


Author(s):  
Caterina Ledda ◽  
Claudia Lombardo ◽  
Elisabetta A. Tendi ◽  
Maria Hagnas ◽  
Gianluca Paravizzini ◽  
...  

: Fluoro-edenite (FE) is an asbestos-like amphibole present in the bentonitic lavas extracted from a stone quarry in Biancavilla, a village sited in the Etnean Volcanic Area (Italy). : Thoracic pathologies are the results of excessive inflammatory processes that are the early response of the immune system to inhaled fibers. As demonstrated for asbestos, fibers may trigger immune system cells in an acute and/or chronic manner. This review aims to clarify the pathways of inflammation in workers exposed to FE fibers. : Based on the articles reviewed, it seems that a permanent stimulus created by repeatedly inhaling the FE fibers and their persistence in the body can act as trigger both in promoting inflammatory processes and in immunological induction of autoimmune disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


Author(s):  
Georgia E. Hodes

In the late 20th century, the discovery that the immune system and central nervous system were not autonomous revolutionized exploration of the mechanisms by which stress contributes to immune disorders and immune regulation contributes to mental illness. There is increasing evidence of stress as integrated across the brain and body. The immune system acts in concert with the peripheral nervous system to shape the brain’s perception of the environment. The brain in turn communicates with the endocrine and immune systems to guide their responses to that environment. Examining the groundwork of mechanisms governing communication between the body and brain will hopefully provide a better understanding of the ontogeny and symptomology of some mood disorders.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1755
Author(s):  
Jacob McCright ◽  
Ann Ramirez ◽  
Mayowa Amosu ◽  
Arnav Sinha ◽  
Amanda Bogseth ◽  
...  

The gastrointestinal (GI) tract is one the biggest mucosal surface in the body and one of the primary targets for the delivery of therapeutics, including immunotherapies. GI diseases, including, e.g., inflammatory bowel disease and intestinal infections such as cholera, pose a significant public health burden and are on the rise. Many of these diseases involve inflammatory processes that can be targeted by immune modulatory therapeutics. However, nonspecific targeting of inflammation systemically can lead to significant side effects. This can be avoided by locally targeting therapeutics to the GI tract and its mucosal immune system. In this review, we discuss nanomaterial-based strategies targeting the GI mucosal immune system, including gut-associated lymphoid tissues, tissue resident immune cells, as well as GI lymph nodes, to modulate GI inflammation and disease outcomes, as well as take advantage of some of the primary mechanisms of GI immunity such as oral tolerance.


2019 ◽  
Vol 20 (15) ◽  
pp. 1236-1243 ◽  
Author(s):  
Hernández-Ramos Reyna-Margarita ◽  
Castillo-Maldonado Irais ◽  
Rivera-Guillén Mario-Alberto ◽  
Ramírez-Moreno Agustina ◽  
Serrano-Gallardo Luis-Benjamín ◽  
...  

Background: The immune system is responsible for providing protection to the body against foreign substances. The immune system divides into two types of immune responses to study its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the first protective barrier of the organism that also works as a regulator of the adaptive immune response, if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune response takes action with the consequent antigen neutralization or elimination. The adaptive immune response objective is developing a specific humoral response that consists in the production of soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective mechanism is induced artificially through an immunization or vaccination. Unfortunately, the immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several factors. Conclusion: Vaccine adjuvants are chemical substances of very varied structure that seek to improve the immunogenicity of antigens. The main four types of adjuvants under investigation are the following: 1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules, 3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines. However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages are addressed. Finally, the immunological usefulness of these molecules is discussed through immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this immunization.


2021 ◽  
pp. 16-30
Author(s):  
S.P. Alpatov

Serious sports achievements are associated with extreme impacts on the human body: psycho-emotional and physical loads of the training period, competitions requiring the mobilization of all the adaptive reserves of the body, changes in climatic conditions when athletes move long distances, adverse environmental factors leading to hypothermia. The combination of these factors has a depressing effect on the immune system. The emergence of immune disorders in athletes during periods of extreme physical and psycho-emotional stress made it possible to identify the mechanisms of adaptation failure and depletion of immunity reserves, which requires corrective measures. Roncoleukin® is a complete structural and functional analogue of endogenous interleukin-2 (IL-2) and has the same spectrum of functional activity. It is able to compensate for the deficiency of IL-2 and reproduce its effects as one of the key components of the cytokine network.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
W. Kazana ◽  
M. Mitkiewicz ◽  
M. Ochnik ◽  
M. Sochocka ◽  
A. Zambrowicz ◽  
...  

One of the goals of biomedical sciences is to search and identify natural compounds that are safe, have no side effects, and possess immunostimulatory activity. It has been proven that medicines of natural origin can be effective agents, supporting the therapy of many diseases, not only in the weakened immune system of the body but also in the prevention of many diseases in healthy people. It has been shown that yolkin, a polypeptide complex isolated from hen egg yolk as a fraction accompanying immunoglobulin Y (IgY), possesses potential biological activity. However, the mechanism of its action has not been explained. The objective of this investigation was to examine the molecular mechanisms of innate immune response, activated in response to yolkin, in murine bone marrow-derived macrophages (BMDM). It was shown that yolkin induced phosphorylation of extracellular signal-kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) and upregulated expression and production of type I interferons, TNF-α (tumor necrosis factor α), and nitric oxide (NO), in BMDM cells. Using pharmacological inhibitors of ERK 1/2 and JNK kinases, we revealed that the JNK signaling cascade is required for yolkin-induced inducible NOS expression and upregulation of NO production in mouse macrophages. Using the TLR4-deficient BMDM cell line, we established that yolkin can activate macrophages in a TLR4-dependent manner. It was also shown that NO, TNF-α, and type I IFNs (α/β) produced by BMDM cells in response to yolkin triggered antiviral activity. These data indicate that yolkin affects the regulation of the immune system and antiviral response; therefore, it can be used as an effective immunostimulator of the innate immunity or as a supplement of the conventional therapy of immunodeficiency.


2019 ◽  
Vol 6 (1) ◽  
pp. 58-62
Author(s):  
Gabriel Ferraz Campos Basilio ◽  
Lucília Fraissat Santana ◽  
Matheus Moreira

biológico complexo que pode causar diferentes reações imunes no organismo. Essa resposta imune leva a manifestações leves ou graves da doença. O objetivo deste trabalho é abordar o papel do sistema imune na fisiopatologia da malária e suas complicações. Visando assim, definir  a melhor abordagem a ser seguida pelas novos trabalhos em terapêutica da malária. Palavras-chave: malária; sistema imune; fisiopatologia; complicações. ABSTRACT Malaria is one of the leading global health issues; it causes more than a million deaths each year. In Brazil, malaria cases are mainly concentrated in the north region of the country. The disease is caused by a complex biological cycle parasite which can cause different immune reactions in the body. This immune response leads to mild or severe manifestations of the disease. The objective of this work is to address the role of the immune system in the pathophysiology of malaria and its complications. In this way, we can define the best approach to new research in malaria therapy. Keywords: malaria; immune system; physiopathology; complications.


Sign in / Sign up

Export Citation Format

Share Document