scholarly journals The Design and Implementation of Fan Chips as Cooling for Milling Process on Aluminum Alloy 5086 to Increase Tool Life

Author(s):  
Agus Sifa ◽  
Dedi Suwandi ◽  
Tito Endramawan ◽  
Alam Aulia Rachman

In the metal machining process, especially in the milling process, the parameters that affect the quality milling process results are cooling media because it affects the tool life used. This paper aims to determine the performance of using fan chips as the coolant in the dry milling process area. The method used is the computational fluid dynamic (CFD) method and the experimental milling process on a workpiece made from aluminum alloy 5086. In experimental testing using a variation of the milling machine spindle rotation. The simulation test results on the fluid flow character on fan chips with a protector producing a central character with a small area. In contrast, fan chips without a protector make a central character with a broader area. The wind speed data in simulation testing and experimental testing produced the same trend graph. The results of the performance of fan chips after experimented with variations in spindle rotation, cooling process on area occurs when the motor spindle rotates above 1120 Rpm on the fan chips with a protector, and the engine spindle rotates above 770 Rpm on the fan chips without a protector. The effect of fan chips on tool life affects increasing tool life by 8 minutes on installing fan chips with a protector and increasing tool life by 12 minutes on installing fan chips without a protector.

Author(s):  
Agus Sudianto ◽  
Zamberi Jamaludin ◽  
Azrul Azwan Abdul Rahman ◽  
Sentot Novianto ◽  
Fajar Muharrom

Manufacturing process of metal part requires real-time temperature monitoring capability to ensure high surface integrity is upheld throughout the machining process. A smart temperature measurement and monitoring system for manufacturing process of metal parts is necessary to meet quality and productivity requirements. A smart temperature measurement can be applied in machining processes of conventional, non-conventional and computer numerical control (CNC) machines. Currently, an infrared fusion based thermometer Fluke Ti400 was employed for temperature measurement in a machining process. However, measured temperature in the form of data list with adjustable time range setting is not automatically linked to the computer for continuous monitoring and data analysis purposes. For this reason, a smart temperature measurement system was developed for a CNC milling operation on aluminum alloy (AA6041) using a MLX90614 infrared thermometer sensor operated by Arduino. The system enables data linkages with the computer because MLX90614 is compatible and linked to Microsoft Exel via the Arduino. This paper presents a work-study on the performance of this Arduino based temperature measurement system for dry milling process application. Here, the Arduino based temperature measurement system captured the workpiece temperature during machining of Aluminum Alloy (AA6041) and data were compared with the Fluke Ti400 infrared thermometer. Measurement results from both devices showed similar accuracy level with a deviation of ± 2 oC. Hence, a smart temperature measurement system was succeesfully developed expanding the scopes of current system setup.


2015 ◽  
Vol 809-810 ◽  
pp. 33-38 ◽  
Author(s):  
Ştefan Adrian Moldovan ◽  
Vasile Năsui

In this paper we present a technological problem encountered in the machining accuracy of the parts for aerospace made of aluminum alloy extruded profile with length up to 10 meters. Those parts have very tight tolerances and on milling process appear several factors that influence the repeatability of machining processes, the main one being the thermal expansion effect.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts.


2020 ◽  
Vol 846 ◽  
pp. 99-104
Author(s):  
Gandjar Kiswanto ◽  
Maulana Azmi ◽  
Adrian Mandala ◽  
Dede Lia Zariatin ◽  
Tae Jo Ko

The development of micro-products in industry, like aviation, medical equipment, electronics, etc, has been increasing lately. The need for scaling down of product has been increasing to make the product simpler and complex. Micro-milling has capabilities in producing complex parts. In this study, mapping and comparing the result of the machining process of Inconel 718 and Aluminum Alloy 1100 was employed. In this experiment, Inconel 718 was used as workpiece material and the result of Aluminum Alloy taken from recent studies. Then, A cutting tool with a diameter 1 mm carbide coating TiAlN was used in this experiment. The machining process was performed with three varieties of spindle speed and feed rate with a constant depth of cut. After the machining is done, the mapping of the result surface roughness of Inconel 718 and AA1100 performed. It was found that Inconel 718 has poor machinability compared with AA 1100. Inconel 718 also has a high manufacturing cost compared to AA 1100 because the cutting tool was easy to wear.


Author(s):  
Ebrahim Hosseini ◽  
Shafiqur Rehman ◽  
Ashkan Alimoradi

Turn-milling is a hybrid machining process which used benefits of interrupted cutting for proceeding of round bars. However, number of controllable parameters in the hybrid process is numerous that makes optimizing the process complicated. In the present study, an optimization work has been proposed to investigate the trade-off between production rate and cutting force in roughing regime as well surface roughness and tensile residual stress in finishing regime. Number of 43 experiments based on response surface methodology was designed and carried out to gather required data for development of quadratic empirical models. Then, the adequacy and importance of process factors were analyzed using analysis of variances. Finally, desirability function was used to optimize the process in rough and finish machining regimes. The obtained results showed that selection of eccentricity and cutter speed at their maximum working range can effectively enhance the quality characteristics in both the roughing and finishing regimes.


2018 ◽  
Vol 19 ◽  
pp. 80-90 ◽  
Author(s):  
Marcos Martínez ◽  
Nathaniel Huygen ◽  
John Sanders ◽  
Sez Atamturktur

2014 ◽  
Vol 800-801 ◽  
pp. 243-248
Author(s):  
Kai Zhao ◽  
Zhan Qiang Liu

When machining the complex parts of aircraft engines, the milling force for the circular contour must be accurately predicted to reduce machining vibration. In this paper, the prediction model of the mean milling force per tooth during machining circular contour is developed. Firstly, the formulas of the entry angle, the exit angle and the equivalent feed per tooth are established through the analysis of circular contour milling process. Then, the equation of the mean milling force per tooth is deduced based on mechanistic force model during the circular contour machining process. Finally, the prediction model of mean milling force per tooth during machining circular contour is developed using MATLAB programming. The relationship between the milling force per tooth and surface curvature radius of the machined workpiece is also analyzed in this paper.


2012 ◽  
Vol 723 ◽  
pp. 208-213 ◽  
Author(s):  
Yi Wan ◽  
Chen Li ◽  
Zhan Qiang Liu ◽  
Shu Feng Sun

Residual stresses generated in milling process affect the performance of machined components. Milling residual stresses correlate closely with the cutting parameters. In this paper, the generation and distribution of surface residual stresses in milling of aluminum alloy 7050-T7451 was investigated. The cutting speed changes from 300m/min to 3000m/min. In the experiments, the residual stresses on the surface of specimen are detected by X-ray diffraction technique. The result shows that compressive residual stresses are generated when cutting speed is under 500 m/min. In feed and its orthogonal direction, the effect of cutting speed and feed rate on residual stresses is similar. The formation of the residual stresses can be explained by thermo-mechanical coupling effects.


2018 ◽  
Vol 108 (10) ◽  
pp. 736-742
Author(s):  
J. Hartig ◽  
B. Kirsch ◽  
J. Aurich

Mit Schneidkantenpräparation kann das Werkzeug im Zerspanprozess an die Bearbeitungsaufgabe angepasst werden. Homogene Präparationen können dabei entweder auf hohe Belastungen des Werkzeugs oder ein optimiertes Bearbeitungsergebnis im Sinne der Oberfläche ausgelegt werden. In diesem Beitrag wurden die Schneidkanten von Hartmetall-Wendeschneidplatten unterschiedlich inhomogen präpariert, um den unterschiedlichen Anforderungen entlang des Eingriffs Rechnung zu tragen. Neben der Werkzeugstandzeit wurde das Prozessergebnis beim Außenlängs-Runddrehen von ausferritischem Gusseisen (ADI) 900 untersucht.   The preparation of cutting edges allows for tools to be tailored to the machining process. A homogeneous preparation can either be designed for high loads in the machining process or an optimized machining result on the surface. In this article, the cutting edges of tungsten carbide indexable inserts were prepared inhomogeneously and thus individually matched to the machining task. Tool life and machining performance while turning austempered ductile iron (ADI) 900 were investigated.


2011 ◽  
Vol 697-698 ◽  
pp. 129-132 ◽  
Author(s):  
Bing Han ◽  
Cheng Zu Ren ◽  
X.Y. Yang ◽  
Guang Chen

The deflection of Aluminum alloy thin-wall workpiece caused by the milling force leads to additional machining errors and reduces machining accuracy. In this paper, a set of experiments of milling thin-wall workpiece were carried out to study the deflection of thin-wall workpiece. The workpieces, with different types of material and different thicknesses, were machined on CNC machining center. The deflections of workpiece were measured by a three-coordinate measuring machine. Effects of Aluminum alloy material and thickness on deflection are discussed based on the experimental data.


Sign in / Sign up

Export Citation Format

Share Document