scholarly journals Effect of Stacking Sequences on Impact properties of Kenaf - Areca Hybrid Epoxy Composite

In this research impact properties of the hybrid natural fiber composites made up of areca, kenaf fiber mats with a 10 wt. % of wood dust as the filler materials in six different stacking sequences are studied. The fibers are treated for 30 hours with 10 % of NaOH solution at room temperature to improve the adhesion properties of the fibers. The composites are made-up by hand lay-up procedure using unsaturated polyester resin combined with a catalyst of Methyl Ethyl Ketone Peroxide (MEKP) and accelerator of Cobalt. The fabricated composites are allowed to cure for 24 hours at room temperature by placing a dead weight which gives a compact pressure. After that the hybrid composites are cut as per ASTM D256 standard to carry out the impact test by Izod Charpy impact tester. Five samples in each stacking were tested for the average value. The impact energy absorbed by specimens with six different stacking sequences are compared. The morphological study of the fractured impact specimens are studied using Scanning Electron Microscope images

2016 ◽  
Vol 23 (4) ◽  
pp. 367-374
Author(s):  
Ying Yu ◽  
Yuqiu Yang ◽  
Kazuo Tanabe ◽  
Mitsuo Mastuda ◽  
Hiroyuki Hamada

AbstractA preliminary investigation on the impact properties and morphologies of unsaturated polyester reinforced with jute woven fabric recycled from used coffee bags with different moisture contents was conducted. The laminated structural effect of hybridization with glass woven fabric was also investigated. Jute/jute-laminated composites, and jute/glass/jute- and jute/jute/glass-laminated hybrid composites were fabricated by the hand lay-up method. Their impact properties were compared by drop-weight and the Izod impact tests. The acoustic emission (AE) technique was applied under a tensile load to detect micro-failure processes in the jute and jute/glass hybrid composites. The number of AE signals and the AE energy were monitored using two transducers with resonant frequencies of 140 kHz and 1 MHz. The results showed that the moisture content affected the mechanical properties of the composites. The strength and elongation at break of the jute yarn decreased with a decrease in moisture content. The AE characteristics and observations of the fracture surfaces revealed that the composites fabricated from jute fabric with low moisture content had a relatively higher initial fracture stress and higher resistance to micro-fractures. Moreover, the mechanical properties of the hybrid composites were significantly affected by the laminating structure.


2011 ◽  
Vol 264-265 ◽  
pp. 688-693 ◽  
Author(s):  
Mohammad Jawaid ◽  
H.P.S. Abdul Khalil ◽  
A.H. Bhat ◽  
A. Abu Baker

The hybrid composites were fabricated by taking cheaply available empty fruit bunch fibers and jute fibers trilayers as reinforcement in epoxy matrix using simple hand lay-up-technique. Thermal, mechanical and morphological properties were characterized. The notched izod impact strength of most hybrids increased with respect to the virgin matrix. The laminates coupled with 2-Hydoxy ethyl acrylate (HEA) showed better impact properties than the one without coupling agent. The addition of fibers and coupling agent considerably improved the thermal stability (i.e., decomposition and residue content) of the hybrids. The thermal properties measured by thermogravimetric analysis (TGA) showed that fibres and coupling agents improved thermal properties. The impact fractured composite specimens were analyzed using field emission scanning electron microscopy (FESEM) to know the morphological behaviour.


2015 ◽  
Vol 1115 ◽  
pp. 266-269 ◽  
Author(s):  
Md Abdul Maleque ◽  
A. Atiqah ◽  
M. Fazal ◽  
M.M. Iqbal ◽  
Perowansa Paruka

This paper presents the effect of electron beam radiation on water absorption of kenaf-glass (KG) mat reinforced unsaturated polyester (UPE) hybrid composite which has been compounded using sheet molding compound (SMC) process. Hybrid synthetic and natural fiber composite materials are attractive structural materials because of natural fibers resource and their lower cost making their study a relevant research area today. In the present study, the fabricated hybrid composites were subjected to a dose of electron beam radiation of 75 kGy. Furthermore, fourier transform infra-red (FTIR) analysis was carried out on irradiated hybrid kenaf-glass reinforced UPE composite. It was found that the effect of electron beam radiation increases the impact strength and water uptake significantly.Water absorption values were found to be increased with the increasing of kenaf fiber loading for non-irradiated hybrid KG-UPE composite.


2020 ◽  
pp. 152808372092148 ◽  
Author(s):  
Mansour B Bigdilou ◽  
Reza Eslami-Farsani ◽  
Hossein Ebrahimnezhad-Khaljiri ◽  
Mohammad A Mohammadi

In the present study, the effect of adding various percentage (0.1, 0.3, 0.5, and 0.9 wt.%) of carbon nanotubes on the impact properties of hybrid composites reinforced with the different stacking sequence of Kevlar fibers and ultrahigh molecular weight polyethylene was investigated. The obtained results showed that the composite with the configuration of sandwiched ultrahigh molecular weight polyethylene layers by Kevlar layers had the higher impact properties as compared with other hybrid configurations. Adding 0.1 wt.% carbon nanotubes in this configuration was caused to increase the normalized absorbed energy more than 6.5 times. The fracture surface of this configuration showed that the branching and expanding the damage area were the dominant mechanisms for the energy absorption of impactor. Also, the field emission scanning electron microscope illustrated that the carbon nanotubes by bridging, pulling out, and fracturing mechanisms increased the capability of energy absorption in the hybrid composites.


2015 ◽  
Vol 24 (4) ◽  
pp. 096369351502400
Author(s):  
C. K. Tai ◽  
R. Ahmad ◽  
H. M. Akil ◽  
M. M. Ratnam

The combined effects of alkali treatment and compression molding temperature on the flexural strength and impact resistance of woven coir fibre composites are investigated. Ten pieces of composites plates made from single-layer woven coir fibre fabricated under different process parameters were used in the study. Five pieces of the coir woven fibre were treated with 6% sodium hydroxide (NaOH) solution while another five were left untreated. The compression molding temperature were varied between room temperature (25°C), 50°C, 75°C, 100°C and 125°C. The flexural properties of the composite were evaluated using the three-point flexural test, while the impact resistance was investigated by drop weight impact tests using a specially designed indenter. The indentation radius on each test specimen was measured using a 3-D metrology system and the depth of indentation was determined from the geometry of the indenter. The results show that the maximum flexural load to failure is improved by 38.9% when the fibres were treated and the compression molding temperature is increased to 125°C. The flexural modulus generally decreased with increase in the molding temperature. The depth of indentation in the treated coir woven composites is lower than that of untreated fibre composite at all molding temperatures. The impact resistance of both untreated and treated fibre composites decreased with the increase in the compression molding temperature. Composites fabricated by molding at room temperature, 50°C and 75°C using treated fibre produced the best impact properties.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2276
Author(s):  
Rozyanty Rahman ◽  
Syed Zhafer Firdaus Syed Putra ◽  
Shayfull Zamree Abd Rahim ◽  
Irwana Nainggolan ◽  
Bartłomiej Jeż ◽  
...  

The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.


Author(s):  
Govind Pathak ◽  
Om Prakash Dubey ◽  
Prafful Kumar Manoharan

The natural fiber-reinforced polymer composite is swiftly growing both in phrases of their industrial applications and fundamental research. They are renewable, cheap, absolutely or in part recyclable and biodegradable. The incorporation of herbal fibers consisting of sisal with glass fiber hybrid composites has additionally received growing industrial packages. Herbal and synthetic fibers are mixed in the same matrix (unsaturated polyester) to make sisal/glass fiber hybrid composites and the mechanical residences of those hybrid composites had been studied. A giant development in mechanical homes of sisal/glass fiber hybrid composites has been observed. the chalk powder (additive) is likewise introduced to the resin (unsaturated polyester) in proportions of 1%, 2%, 3% by way of weight of resin respectively and sisal/glass fiber hybrid composites were organized through the usage of this resin to take a look at the effect of chalk powder on mechanical homes of those hybrid composites. It is also found that because the chalk powder quantity increases tensile and flexural residences are decreases.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mohaiman J. Sharba ◽  
Z. Leman ◽  
M. T. H. Sultan ◽  
M. R. Ishak ◽  
M. A. Azmah Hanim

Monotonic (tensile and compression) properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.


2007 ◽  
Vol 72 (7) ◽  
pp. 713-722 ◽  
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Branislav Bajceta ◽  
Predrag Stajcic ◽  
Srdjan Bosnjak

The aim of this paper is to present the influence of high and low temperatures on the impact properties glass-epoxy composites. The impact strength an is presented for four different glass-epoxy composite structures at three different temperatures, i.e., at room temperature t=20?C, at an elevated temperature t=+50?C and at a low temperature t=-50?C. Standard mechanical testing was carried out on the composite materials with specific masses of reinforcement of 210 g m-2 and 550 g m-2 and orientations 0?/90? and ?45?. Micromechanical analysis of the failure was performed in order to determine real models and mechanisms of crack and temperature influence on the impact properties. .


2008 ◽  
Vol 27 (16-17) ◽  
pp. 1789-1804 ◽  
Author(s):  
G. Venkata Reddy ◽  
S. Venkata Naidu ◽  
T. Shobha Rani

Sign in / Sign up

Export Citation Format

Share Document