scholarly journals Production of Dry Lean Concrete by Sustainable Materials to Use in Road Sub-Base Layer for Rigid Pavement

In the present scenario, due to the rapid demand on the infrastructure projects and consistent dependency over conventional materials have resulted in scarcity of the conventional construction materials and rise in construction costs. By replacing subbase layer of road with Dry lean concrete produced with sustainable materials, cost on the construction can be reduced by 51.4%. The various soil used in this study are red soil, loamy soil and black cotton soil. These soils are brought from different places of Bangalore. These soils are used to totally replace the fine aggregates. The LD slag obtained from JSW steel manufacturing plant from Bellary. To use the steel slag in concrete making process of Low strength Dry Lean Concrete, initial optimization of materials (steel slag) was done with the 7days strength. The most desirable and equivalent material to that of natural aggregates (i.e. steel slag) was found to be at 50% replacement and 100% replacement of coarse aggregate with LD slag. The each batch of concrete is prepared with soil and combination of 100% slag, 50% natural aggregates + 50% LD slag and 100% natural aggregates. The various soils used are red soil, loamy soil and BC soil. These cubes, cylinder and beams are tested for compressive strength, split tensile strength and flexure strength respectively for 7days and 28 days, and water absorption for each specimen of cube is measured at 28 days. It was observed that, strength of concrete produced using red soil, loamy soil are fulfilling the strength requirements of conventional dry lean concrete used as a sub base in rigid pavements. As per IRC: SP: 49-2014, the minimum strength requirement of cubes at 7 days is 7MPa.

2021 ◽  
Vol 13 (8) ◽  
pp. 4396
Author(s):  
Bo Gao ◽  
Chao Yang ◽  
Yingxue Zou ◽  
Fusong Wang ◽  
Xiaojun Zhou ◽  
...  

In recent years, recycling steel slag is receiving growing interest in the road base layer construction field due to its role in alleviating land occupation and resource shortages. However, the mixture compaction and its environmental impact on practical construction sites remain unclear, which may hinder the application of steel slags in road layers. This study investigates the pavement construction of the ‘Baotou-Maoming’ motorway, located in Inner Mongolia, China, analyzing the compaction procedures and assessing the environmental impacts caused by the road base layer containing steel slag. Firstly, mechanical properties and texture appearances of the steel slag aggregates are characterized. Afterwards, the comparative assessments for steel slag and andesite layers compaction are quantified from equivalent CO2 emission and energy consumption aspects, respectively. The results show that the steel slag has a better surface texture than the natural aggregates; physical properties including compactness, flatness and compressive strength comply with the requirements for applying steel slag to a hydraulically bound mixture. Compared to the base layer using andesite aggregates, the compaction vibration period of the course containing steel slags should be reduced to achieve a proper density due to the “hard-to-hard” effect that occurs between the adjacent steel slag particles. Consequently, the additional energy and the equivalent CO2 are generated at 2.67 MJ/m3 and 0.20 kg/m3, respectively.


2021 ◽  
Vol XXVIII (2) ◽  
pp. 120-124
Author(s):  
Ion Chiricuta ◽  

This work facilitates the application of modern technologies for road construction, by using steel slag instead of natural stone aggregates. This procedure will result in a significant decrease in the cost of works (slag, being an industrial waste, is much cheaper than natural aggregate). In the same time, the use of slag aggregates can result in protection of the environment, by eliminating slag storage spaces and by preserving the natural environment (extraction of natural aggregates may disturb groundwater and intensify erosion etc). Marshall stability, flow index and bulk density were determined for both kinds of aggregates, in order to find if the steel slag can safely replace the natural aggregates. By comparing the experimental results obtained for the two kinds of aggregates, it was confirmed the possibility of successfully using of steel slag as a substitute for natural aggregates in the base layer of a road structure.


2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Bruno Crisman ◽  
Giulio Ossich ◽  
Paolo Bevilacqua ◽  
Roberto Roberti

Steel production wastes (steel slags) are used more often in asphalt concrete pavements as a valuable replacement for natural aggregates, which are becoming increasingly rare. In this paper authors investigate the polishing characteristics of aggregates, and in particular of steel slags, used in bituminous road surfacing, are a major factor in determining the resistance to skidding. The main purpose of the study is the identification of a suitable degradation model, based on friction indicators, in the laboratory, as well as the comparison of in-situ pavement skid resistance with the cumulative number of passing vehicles over the years. The model predicts the expected resistance to skidding of the road surface based on the knowledge of the polished stone value (PSV) of the aggregates and the expected traffic on the road. In this study, several types of aggregates were compared: steel slag, limestone, limestone and slag mixture, diabase, Criggion stone and basalt. Using a standard PSV test, it was found that the aggregates did not reach the lower value of skid resistance (equilibrium value). The analysis of the British Portable Number (BPN) data versus polishing time allowed to empirically derive a regression model for each investigated aggregate. Hence, it appears possible to define both an investigatory level and threshold level to predict the actual residual life of the pavement from the examination of skid resistance.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-8
Author(s):  
J. Bright Brabin Winsley ◽  
M. Muthukannan

Background and Objective: The demand for course aggregate is increasing every day. Natural aggregate used for ordinary concrete is obtained by quarrying, which cause serious environmental issues. An alternate course aggregate is needed for sustainable development. The objective of this research is to produce an alternative course aggregate in combination with soil available locally near site along with fly ash, to test its properties to make it fit for concrete. Method: An alternative coarse aggregate is produced from red soil and fly ash mixed at various ratios, 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, fresh aggregate granules of different sizes less than 10mm is prepared using hand press, the aggregates were sundried in shade for 24hours, oven dried at 110°C, burned in Muffle furnace at temperature of 950°C and cooled gradually to reach room temperature. After the production, the specific gravity, bulk density, water absorption, Impact and aggregate crushing of the aggregates were tested. Result: Test results showed that aggregates produced are of lesser specific gravity, density with relatively appreciable impact value and crushing value. Conclusion: The test results show that the aggregates produced can be used in construction as replacement for natural aggregates.


2010 ◽  
Vol 163-167 ◽  
pp. 1651-1654 ◽  
Author(s):  
Jin Bang Wang ◽  
Zong Hui Zhou

Several series of concrete aggregates with different content of steel slag, blast furnace slag, coal gangue and fly ash were prepared. The reasonable ratio of raw materials and process parameters to prepare the aggregates were determined by measuring the water absorption, crush indicators and apparent density of the aggregates. The mineral composition and morphology of the aggregates were analyzed by XRD, SEM and EDS. The results showed the aggregate with about 30% steel slag, 50% slag, 20% gangue, and calcined at 1300°C for 90 minutes had the best performance. The water absorption of the aggregate is about 1.55% which is lower than that of the natural aggregates (about 2.2% on average). Both the crushing index (about 11.39%) and the apparent density (2672 kg/m3) of the aggregate meet the requirements of national standards.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


2020 ◽  
Vol 1012 ◽  
pp. 26-31
Author(s):  
Eliziane Medeiros Santos ◽  
Alaelson Vieira Gomes ◽  
Flávio James Humberto Tommasini Vieira Ramos ◽  
Sergio Neves Monteiro

The search for sustainable materials has been increasingly growing due to the world environmental impacts faced. With the improper disposal of PET packaging and the waste generated by steel making, such as slag, a composite of these materials was created in search of a sustainable product. The composite has as its matrix the polymer and its particles are geopolymeric of the steel slag. The polymer composites were manufactured with concentrations of 0%, 20%, 40% and 60% of geopolymer. The characterizations showed that they are composites with low moisture absorption and that the affinity between the matrix and the reinforcement is impaired as the amount of charge increases. It was possible to realize that composites are good materials for future studies for possible future applications, such as ballistic vests. Composites are great precursors for achieving product sustainability due to the feasibility of reusing waste and disposing of it improperly in the environment.


2013 ◽  
Vol 743-744 ◽  
pp. 180-185
Author(s):  
Jun Hua Zhang ◽  
Zong Hui Zhou ◽  
De Cheng Zhang ◽  
Xin Cheng

Artificial aggregates with high-performance were prepared by the methods including steel slag, furnace slag, fly ash and coal gangue, and the recycling concrete was prepared by artificial aggregates instead of natural aggregates. This kind of concrete abandoned was able to completely regenerate cement, which will make the reuse of concrete possible. The composition and characteristics of the artificial aggregates will produce a significant effect on the interfacial transition zone (ITZ) in recycling concrete. The morphological features and mineral composition of three artificial aggregates were analyzed by SEM and XRD, and the ITZ of three recycling concrete and one ordinary concrete was investigated by SEM and EDS. The results showed that compared with ordinary concrete, although the recycling concretes ITZ had a small amount of CH crystal, most of the space was filled with dense hydration products. The interface width was 40μm, which less than 50μm of ordinary concrete. Artificial aggregates with different ratio of raw materials had a great effect on recycling concretes ITZ. The ITZ of recycling concrete prepared with 30% steel slag, 50% furnace slag, 20% fly ash had the smallest Ca/Si and much more C-S-H. the structure of ITZ was much denser and the microstructure was relatively better.


Sign in / Sign up

Export Citation Format

Share Document