Levels of Electromagnetic Fields From Rail Vehicles in the Context of Formal Requirements

2020 ◽  
Vol 64 (187) ◽  
pp. 109-116
Author(s):  
Andrzej Miszkiewicz ◽  
Krzysztof Tchórzewski

The article discusses the issue of electromagnetic field levels emitted from rail vehicles with regard to civil protection. The article presents the lack of legal solutions, limits and research methods in the railway industry in Poland. It also depicts the initial results of measurements from rail vehicles. Based on the findings, taking into consideration the measurement results and suppression of electromagnetic waves in free space, electromagnetic fields may reach substantial levels which can affect people’s health and life. The authors of the article conclude that the problem should not be ignored and requires further research, bearing in mind the progressing saturation of all rail vehicles with devices and electronic systems which will serve as sources of electromagnetic fields. Keywords: electromagnetic fields, civil protection, measurements

2021 ◽  
Vol 3 (6 (111)) ◽  
pp. 25-31
Author(s):  
Valentyn Glyva ◽  
Volodymyr Bakharev ◽  
Natalia Kasatkina ◽  
Oleg Levchenko ◽  
Larysa Levchenko ◽  
...  

This paper reports the principles of design and the examined protective properties of liquid materials for shielding the electric, magnetic, and electromagnetic fields over a wide frequency range. The materials were made on the basis of iron ore concentrate and a pigment additive, with water-dispersed and geopolymer paints used as a matrix. The tests of protective properties for the electrical and magnetic components of the electromagnetic field of industrial frequency showed that the electric field shielding coefficients at a concentration of the screening substance of 15−60 % (by weight) equaled 1.1−8.6; magnetic field – 1.2−5.3. The shielding coefficients of the material based on a water-dispersed paint are lower than those of a geopolymer one, which can be explained by the oxidation of an iron-containing component and a decrease in electrical conductivity. The shielding coefficients of the electromagnetic field with a frequency of 2.45 GHz are 1.2−7.9. The highest coefficients are inherent in the material with filler made of iron ore concentrate and titanium-containing pigment powder in a ratio of 1:1. To design materials with the required (predictable) protective properties, the relative magnetic, dielectric permeability of materials was calculated. It is shown that the obtained data are acceptably the same as the results from direct measurements of magnetic and dielectric permeability and could be used to calculate the wave resistance of the material and the predicted reflection coefficient of electromagnetic waves. Thus, there is reason to assert the need to build a database on the frequency dependence of effective magnetic and dielectric permeability in order to automate the design processes of composite materials with predefined protective properties.


2013 ◽  
Vol 58 (3) ◽  
pp. 919-922 ◽  
Author(s):  
K. Granat ◽  
B. Opyd ◽  
D. Nowak ◽  
M. Stachowicz ◽  
G. Jaworski

Abstract The paper describes preliminary examinations on establishing usefulness criteria of foundry tooling materials in the microwave heating technology. Presented are measurement results of permittivity and loss tangent that determine behaviour of the materials in electromagnetic field. The measurements were carried-out in a waveguide resonant cavity that permits precise determination the above-mentioned parameters by perturbation technique. Examined were five different materials designed for use in foundry tooling. Determined was the loss factor that permits evaluating usefulness of materials in microwave heating technology. It was demonstrated that the selected plastics meet the basic criterion that is transparency for electromagnetic radiation.


2021 ◽  
pp. 120-129
Author(s):  
A. F. Sekachev ◽  
V. V. Shalai ◽  
Yu. D. Zemenkov ◽  
A. F. Fitzner ◽  
A. E. Yakovlev

The supply of heat to oil media pumped by pipeline transport systems is one of the main problems in the oil industry. The article describes a method for supplying heat to oil-containing media using the energy of an electromagnetic field. The possibility of releasing surfaces in contact with oil sludge under the influence of electromagnetic fields has been shown by experiment. We describe the design and parameters of a biconical horn radiator of a microwave electromagnetic field operating at a frequency of 2 450 MHz. A method for generating energy and transmitting it to the emitter by means of a coaxial cable is shown. Testing the emitter in oil placed in an optically transparent and radio-tight double-walled tank is presented. The design of the stand allows us to safely examine the thermal process using a thermal imager. The installation made it possible to heat 7 liters of oil at 15 °C in 12 minutes.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7395
Author(s):  
Marco Xavier Rivera Rivera González ◽  
Nazario Félix Félix González ◽  
Isabel López ◽  
Juan Sebastián Ochoa Ochoa Zambrano ◽  
Andrés Miranda Miranda Martínez ◽  
...  

A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31408-31420
Author(s):  
Palalle G. Tharushi Perera ◽  
Nevena Todorova ◽  
Zoltan Vilagosh ◽  
Olha Bazaka ◽  
The Hong Phong Nguyen ◽  
...  

Membrane model systems capable of mimicking live cell membranes were used for the first time in studying the effects arising from electromagnetic fields (EMFs) of 18 GHz where membrane permeability was observed following exposure.


Author(s):  
Arief Rahmadiansyah ◽  
Ele Orlanda ◽  
Merti Wijaya ◽  
Hanif Wigung Nugroho ◽  
Rifki Firmansyah

Abstract Light is a propagation of electromagnetic waves that spread all directions that play an important role in everyday life because it is an absolute part of life and without the light of life on earth can not develop. The amount of light illuminance is necessary to know because basically humans require adequate lighting. The instrument for measuring light illuminance is a luxmeter or light meter. However, this gauge is difficult to obtain and the price of the tool is expensive so that it can only be found in certain school laboratories or colleges. While telemetry is the process of measuring the parameters of an object (objects, space, natural conditions) that the measurement results are transmitted to other places via data transmission without or using a cable (wireless). The purpose of this study is to measure, to know the conditions of light intensity. This research uses experimental model of light intensity measurement using independent measuring instrument with combination of LDR and Arduino uno consisting of transmitter and receiver. In the transmitter there are LDR, Arduino Uno, and RF Module Board 433 MHz components, while the receiver consists of Arduino Uno, laptop, and RF Module Board 433 MHz. In this design is also done a variety of testing tools using distance variables. Overall this tool is working well. The system has successfully delivered telemetry measurement results with a range of conditions without a wall barrier with a maximum distance of <28 m. And conditions there are obstacles diding with a maximum distance <13.2.


2019 ◽  
Vol 6 (2) ◽  
pp. 86-99 ◽  
Author(s):  
E. M. Frantsiyants ◽  
E. A. Sheiko

The review examined and analyzed scientific publications on the effect of electromagnetic fields (EMF) on various sys­tems of the human body and animals with tumors, as well as on pain in the experiment and the clinic. The theoretical foundations and practical results of the use of EMF in various modulations and modes in the goals and objectives of oncology, including how to optimize the process of anesthesia and correct the vital activity of the body's functional systems with a tumor, are consecrated. Information is given on possible physicochemical effects, features, and mecha­nisms of therapeutic influence at various levels of a living organism. The ability of electromagnetic waves to transfer in­formation both within a single biosystem and at the level of a whole living organism with a tumor is shown. Studies of combined action of EMF and chemotherapy were analyzed. It has been established that there are experimental prerequisites for using this factor in order to induce changes in the permeability of the membranes of tumor cells by in­creasing the internalization of chemotherapeutic agents and, thus, enhance the antitumor effect. The role of EMF in the induction of apoptosis in tumor cells is shown. It has been shown that chemotherapy together with electromagnetic fields induces apoptosis and has an inhibitory effect on DNA synthesis in osteosarcoma cells, breast cancer, colon cancer, melanoma and other tumors. The role of magnetic fields in order to enhance the analgesic effect was investigated. The analgesic effect is due to the cessation or weakening of nerve impulses from the painful focus due to the elimination of hypoxia, the improvement of microcirculation, and the reduction of edema, it has been shown. Transcranial magnetic therapy is used as an analgesic tool in onconurology. The therapeutic anti-pain effect is associated with the stimulation of the antinociceptive system, an increase in the synthesis of natural analgesics — endorphins with their subsequent release into the cerebrospinal fluid and blood. As it has already been shown, with the increase in the intensity of pain and its duration, all indicators of the quality of life and the results of treatment of the patient deteriorate, so the search for ways to improve the antitumor effectiveness of specialized treatment and eliminate the causes that prevent their im­plementation continue to be relevant and in demand.


2021 ◽  
Vol 38 (23) ◽  
pp. 238002
Author(s):  
Felipe A Asenjo ◽  
Sergio A Hojman

Abstract A reply to the previous article commenting on non-geodesical propagation of electromagnetic fields on gravitational backgrounds and the eikonal limit are presented.


Author(s):  
V.V. Komarov ◽  
S.K. Bushanskiy ◽  
A.O. Churkin

Waveguide and cavity microwave filters continue to be the most important components of high-power radio electronic systems. Cavity microwave filters are of great interest as a separate group of devices of this type. The fields of application of such filters are constantly expanding, and the variety of their design is quite large. In addition, the requirements for their electromagnetic characteristics and reliability are currently increasing. In this regard, it becomes necessary to analyze the already created designs of these devices and study the main trends of their improvement. The objective of the present study is to review the known technical solutions of bandpass filters, made on cavity resonators of the microwave range. An overview of the designs of devices for filtering electromagnetic waves on cavity resonators with coaxial and waveguide coupling elements of various frequency ranges is carried out. It is proposed to use the configuration of basic resonators as the main criterion for the classification of these devices. In accordance with this criterion, five groups of filters are considered: on rectangular, cylindrical, spherical, coaxial resonators, as well as on resonators of complex shape. The review makes it possible to analyze the features of the implementation of different technical solutions for bandpass microwave filters of medium and high power levels and to identify the main trends in the development of this area of research.


Sign in / Sign up

Export Citation Format

Share Document