scholarly journals ANALYTICAL SUBSTANTIATION OF THE RATIONAL MODE OF VIBRATION IMPACT ON THE HONEYCOMB

Author(s):  
А.В. ШЕМЯКИН ◽  
С.Н. БОРЫЧЕВ ◽  
Д.Е. КАШИРИН ◽  
В.В. ПАВЛОВ ◽  
А.С. КУЗНЕЦОВ

Проблема и цель. Заключается в том, чтобы теоретически обосновать режим виброочистки воскового сырья, при котором происходит отделение частиц воска от перговых гранул. Методология. В результате вибрационного воздействия на соты с пергой действует вынуждающая сила, которая должна быть больше силы трения между перговой гранулой и восковой основой ячейки сота, для того чтобы гранулы перги отделились. Увеличить силу, действующую на гранулу, можно увеличением либо амплитуды, либо частоты колебаний. Управление частотой является более рациональным по сравнению с управлением амплитудой. Для расчета частоты и амплитуды вынуждающей силы используются следующие данные: 2h – толщина рамки с сотами, h = 0,01м; a – длина рамки с сотами, a = 0,3м; b – ширина рамки с сотами, b = 0,4м; ρ – плотность, ρ = 326 кг/м³; N – натяжение; g – ускорение свободного падения, g = 9,81 м/c²; E – модуль упругости, E = 206000 МПа; G – модуль сдвига, G = 74000 Мпа; ν – коэффициент Пуассона, ν = 0,3; υ – коэффициент вязкости. Моделирование исследуемого процесса выполняется в среде Mathcad встроенными средствами статистической обработки. При этом осуществляется математическое моделирование в определенных рамках технологического процесса. Результаты. При воздействии на рамки с сотами, в которых есть перга, гармоническими колебаниями, возникает резонанс на малых частотах, что помогает ускорять процесс очистки. Заключение. Для наиболее качественной очистки воскового сырья от примесей необходимо воздействие вибрации с частотой в диапозоне от 14 до 16 Гц. При этом возникает резонанс, который уменьшает затраты энергии на данный процесс. Problem and purpose. The aim of the study is to theoretical justify the mode of vibration cleaning of wax feedstock, in which wax particles are separated from beads. Methodology. As a result of the vibration action, a force force is exerted on the feather honeycombs, which must be greater than the frictional force, in order for the feather pellets to separate from the wax cells of the honeycombs. To calculate the frequency and amplitude of the force, the following data 2h are used - the thickness of the frame with cells, h = 0.01m; a is the length of the frame with cells, a = 0.3m; b is the width of the frame with cells, b = 0.4m; ρ - density, ρ = 326 kg/m3 ; N - tension; g - acceleration of free fall, g = 9.81 m/c2 ; E - modulus of elasticity, E = 206000 MPa; G - shear modulus, G = 74000 MPa; v is Poisson's coefficient, v = 0.3; υ - viscosity coefficient. Results. When acting on frames with cells in which there is a feather, harmonic oscillations, resonance at low frequencies occurs, which helps to accelerate the cleaning process. Conclusion. For the highest quality purification of wax raw materials from impurities, vibration is necessary with a frequency in the diapozone from 14 to 16. At the same time, a resonance occurs that reduces the energy consumption for this process.

2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2011 ◽  
Vol 347-353 ◽  
pp. 4051-4054 ◽  
Author(s):  
Jian Chu ◽  
Volodymyr Ivanov ◽  
Viktor Stabnikov ◽  
Jia He ◽  
Bing Li ◽  
...  

Cement and chemical grouts have often been used for soil strengthening. However, high cost, energy consumption, and harm to environment restrict their applications. Biocement could be a new green building- material and energy-saving material. Biocement is a mixture of enzymes or microbial biomass with inorganic chemicals, which can be produced from cheap raw materials. Supply of biocementing solution to the porous soil or mixing of dry biocement with clayey soil initiate biocementation of soil due to specific enzymatic activity. Different microorganisms and enzymes can be used for production of biocement.


2012 ◽  
Vol 49 (No. 1) ◽  
pp. 7-11 ◽  
Author(s):  
J. Souček ◽  
I. Hanzlíková ◽  
P. Hutla

In case of pressed composite biofuels production the important part of the production process is the input row materials disintegration. In dependence on disintegrated material properties, disintegration device, grinding stage and technological process there is in practice necessary for disintegration of culm materials 0.5–7% and of wooden species even 0.75–10% of total energetical content of material. A wide range of these figures means that in this sphere of raw materials adaptation can be reached relative high savings through correct choice of technological process and device. The authors of the paper have measured energy consumption of fine disintegration of lignocellulose materials in dependence on particles size and moisture. By the realized measurement of different average size of both input and output particles and consequent statistical evaluation was proved the fiducial energy consumption increase at higher stage of disintegration and higher moisture of the input material. All measurements were carried-out for the grinding mill ŠK 300 and the output particles size was limited by the exchange sieves mesh dimension.


2020 ◽  
Vol 6 (2) ◽  
pp. 81-87
Author(s):  
Zhanna Petrova ◽  
◽  
Kateryna Samoilenko ◽  
Vitaly Vishnevsky

Red beetroot is the main raw material which has a high content of betanine with antioxidant properties. An important emphasis in the processing of antioxidant raw materials by drying is to reduce energy consumption for the dehydration process, the maximum preservation of biologically active substances, and to reduce the cost of the final product. Drying is a complex and energy-intensive process. Therefore, to optimize energy consumption during drying and selection of rational modes of dehydration, it is necessary to apply the calculated analysis of heat and mass transfer on the basis of adequate mathematical models. Calculated and experimental results are compared. In general, the comparison of the results of numerical modeling of convection drying processes of the red beetroot sample with the experimental results showed their rather satisfactory qualitative agreement. The calculation model can be used to approximate the characteristics of the drying process of red beetroot, in particular the time required for drying. The obtained results of calorimetric studies allow stating that with correctly selected compositions, not only the components of native raw materials are stabilized, but also the drying process is intensified with the reduction of energy consumption to process.


2014 ◽  
Vol 50 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Ann-Marie Pendrill ◽  
David Eager

2014 ◽  
Vol 496-500 ◽  
pp. 2711-2714
Author(s):  
Lei Chen ◽  
Yan Fei Cao ◽  
Xiang Sen Zhang

Industrial designers generally are not following the natural ecological law,and their purpose is not to design the most satisfying products by using the least amount of raw materials and the lowest energy consumption and simultaneously prolong durability of the products. This article explores the problems which are caused during the process of industrial design with the view of ecological nature, aims at finding the measures to deal with those problems so as to coordinate the relationship among human being, products and environment during the process of industrial design eventually. From the perspective of ideology, we must rebuild the belief that man and nature are an interdependent integrity; From the perspective our practice, we must stick to the sustainable development.This is the only way to make the products benefit both human and nature and to achieve the harmonious development between human being and nature.


Author(s):  
Meliha Honic ◽  
Iva Kovacic

AbstractThe increasing population growth and urbanization rises the worldwide consumption of material resources and energy demand. The challenges of the future will be to provide sufficient resources and to minimize the continual amount of waste and energy demand. For the achievement of sustainability, increasing recycling rates and reuse of materials, next to the reduction of energy consumption has the highest priority.This article presents the results of the multidisciplinary research project SCI_BIM, which is conducted on an occupied existing building. Within SCI_BIM, a workflow for coupling digital technologies for scanning and modeling of buildings is developed. Laser scanning is used for capturing the geometry, and ground-penetrating radar is used for assessing material composition. For the semi-automated generation of an as-built BIM, algorithms are developed, wherefore the Point-Cloud serves as a basis. The BIM-model is used for energy modeling and analysis as well as for the automated compilation of Material Passports. Further, a gamification concept will be developed to motivate the buildings’ users to collect data. By applying the gamification concept, the reduction of energy consumption together with an automated update of the as-built BIM will be tested. This article aims to analyze the complex interdisciplinary interactions, data, and model exchange processes of various disciplines collaborating within SCI_BIM.Results show that the developed methodology is confronted with many challenges. Nevertheless, it has the potential to serve as a basis for the creation of secondary raw materials cadaster and for the optimization of energy consumption in existing buildings.


2020 ◽  
Vol 4 (4) ◽  
pp. 422-431
Author(s):  
Iqbal Fahri Tobing ◽  
Mustaqimah Mustaqimah ◽  
Raida Agustina

Abstrak. Pengering tipe Tray Dryer merupakan salah satu alat pengering rak atau pengering kabinet yang dapat digunakan untuk mengeringkan berbagai jenis bahan baku makanan. Alat pengering ini dirancang dengan tipe paralel flow tray dimana udara panas yang dihasilkan akan disirkulasikan sejajar dengan permukaan rak pengering dan bekerja menggunakan sumber energi listrik. Penelitian ini bertujuan untuk memodifikasi pengering tray dryer dengan penambahan insulator dan mengetahui konsumsi energi alat pengering tray dryer pada pengeringan kunyit. Parameter pengujian uji kinerja alat tanpa bahan meliputi distribusi suhu, kelembaban relatif dan kecepatan aliran udara dan untuk perhitungan konsumsi energi meliputi penggunaan energi listrik, perhitungan energi thermal, energi mengeringkan bahan, energi untuk menguapkan air bahan, efisiensi pengeringan, energi kipas dan kehilangan energi melalui cerobong. Pada pengujian pengering tray dryer suhu yang digunakan adalah 55°C. Hasil penelitian menunjukkan bahwa secara fungsional dan struktural alat pengering tray dryer setelah dimodifikasi dengan melapisi dinding luar ruang pengering dapat beroperasi dengan baik, proses pengeringan lebih cepat dan energi yang digunakan juga sedikit dibandingkan dengan sebelum dimodifikasi. Konsumsi energi listrik pada alat pengering tray dryer setelah dimodifikasi pada saat proses pengeringan dengan suhu 35oC selama 6,5 jam sebesar 35,33 kWh (127,2 MJ), pada suhu 45oC sebesar 24,26 kWh (88,06 MJ) dengan lamanya pengeringan selama 4,5 jam dan suhu 55oC sebesar 18,89 kWh (68,01 MJ) dengan lama pengeringan selama 3,5 jam, hal ii disebabkan lama pengeringan merupakan salah satu faktor yang menyebabkan besar kecilnya konsumsi energi listrik. Konsumsi energi thermal selama proses pengeringan dengan suhu 35°C adalah sebesar 17,53 MJ, suhu 45°C sebesar 19,54 MJ dan suhu 55°C sebesar 21,34 MJ. Berdasarkan hasil kalkulasi antara energi listrik dan energi thermal didapatkan efisiensi pengeringan pada suhu 35°C sebesar 27,80%, suhu 45°C sebesar 22,2% dan suhu 55°C sebesar 31,4%.Modification Of Tray Dryer With InsulatorAbstract. Tray Dryer is a type of dryer or cabinet dryer that can be used to dry various types of food raw materials. This dryer is designed with a parallel flow tray type where the hot air generated will be circulated parallel to the surface of the drying rack and work using an electric energy source. This study aims to modify the tray dryer with the addition of an insulator and determine the energy consumption of dryer dryers in turmeric drying. The test parameters of the performance test of equipment without material include temperature distribution, relative humidity and air flow velocity and for the calculation of energy consumption including the use of electrical energy, thermal energy calculation, energy drying material, energy to evaporate material water, drying efficiency, fan energy and energy loss through chimney. In testing the tray dryer dryer the temperature used is 55 ° C. The results showed that functionally and structurally the tray dryer after being modified by covering the outer walls of the drying chamber could operate well, the drying process was faster and the energy used was also less compared to before it was modified. Electric energy consumption in the tray dryer after being modified during the drying process with a temperature of 35oC for 6.5 hours amounted to 35.33 kWh (127.2 MJ), at a temperature of 45oC of 24.26 kWh (88.06 MJ) with a duration drying for 4.5 hours and a temperature of 55oC of 18.89 kWh (68.01 MJ) with a drying time of 3.5 hours, this is due to the length of drying is one of the factors causing the size of the electrical energy consumption. The consumption of thermal energy during the drying process with a temperature of 35 ° C is 17.53 MJ, a temperature of 45 ° C is 19.54 MJ and a temperature of 55 ° C is 21.34 MJ. Based on the results of calculations between electrical energy and thermal energy obtained drying efficiency at a temperature of 35 ° C at 27.80%, a temperature of 45 ° C at 22.2% and a temperature of 55 ° C at 31.4%


Author(s):  
Roxana Pătrașcu ◽  
Eduard Minciuc ◽  
George Darie ◽  
Ștefan-Dominic Voronca ◽  
Andreea-Ioana Bădicu

Abstract Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.


Author(s):  
Edgars Kirilovs ◽  
Silvija Kukle ◽  
Dana Beļakova ◽  
Anatolijs Borodiņecs ◽  
Ādolfs Ruciņš ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-US">Energy and raw material costs, an increase in environmental pollution, greenhouse gas emissions, global warming, depletion of fossil raw materials stimulate to seek and study alternatives to the synthetic fibers and products made of them for full or partial replacement. Renewable raw materials, including natural fiber sources, are the future of storage resources with a variety of positive effects on both the planet ecosystem and the living and working environment, and the energy consumption of delivering the required functionality. One of the most important energy-saving types is to reduce energy consumption in buildings by insulating them.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">For Latvian conditions suitable crops are historically grown flax and hemp. Within the framework of the studies, hemp stems are being used. Hemp compared with flax, are less suffering from diseases and less damaged by pests, so hemp cultivation is practically free from use of chemical pesticides and herbicides reducing the risk to the ecosystem.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">One of the most frequently mentioned industrial hemp raw materials positive qualities are their very wide use, practically all plant parts can be used in production of different products. This work explores the possibilities and technologies within the Latvian grown hemp stems to work into board materials with insulation capability.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Hemp fibers/shives mix boards can fulfill the main function of insulation materials, i.e., to reduce the transmission of heat, because they have a porous structure and low density. Material thermal insulation properties affect physical and structural properties of compounds. Cost effective particles board samples from chopped hemp stems with three types of adhesives and different thicknesses were produced and their thermal conductivity evaluated. The technologies applied and test results will be discussed in the paper. </span></p>


Sign in / Sign up

Export Citation Format

Share Document