scholarly journals Execution of Plastic Parts Using 3D Scanners and 3D Printers

2018 ◽  
Vol 55 (2) ◽  
pp. 215-218
Author(s):  
Anca Bucuresteanu ◽  
Dan Prodan ◽  
Adrian Motomancea

In this paper, the authors show a part of research works performed on the use of 3D scanners and 3D printers to execute plastic parts with complex surfaces. 3D scanning allows copying of certain surfaces in our environment, based on existing models. Scanned models may represent various objects, made of a wide range of materials: metals, ceramics, fabrics, plastics, leather, organic materials etc. [1]. This paper shows the results achieved using a scanner and a common and affordable - low-price - printer. 3D scanners and printers allow execution of clones of certain parts with irregular surfaces.

2019 ◽  
Vol 56 (1) ◽  
pp. 6-10
Author(s):  
Adrian Motomancea ◽  
Anca Bucuresteanu ◽  
Dan Prodan

In this paper, the authors show a part of research works performed on the use of 3D scanners and 3D printers to execute the molds required for the cast of parts with complex surfaces. 3D scanning allows copying of certain surfaces in our environment, based on existing models. The finished parts may also be executed from metals that are relatively easy to cast (bronze, aluminum etc.). In order to execute the molds destined for the casting, various pieces may be scanned, with a volume size in the range of [150x150x200 mm3 ÷ 500x500x2000 mm3]. Plastic model printing is performed depending on the capacity of the 3D printer used. This paper shows the results achieved with general-purpose scanner and printer, valued at affordable prices.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 150
Author(s):  
Andrei Marius Mihalache ◽  
Gheorghe Nagîț ◽  
Laurențiu Slătineanu ◽  
Adelina Hrițuc ◽  
Angelos Markopoulos ◽  
...  

3D printing is a process that has become widely used in recent years, allowing the production of parts with relatively complicated shapes from metallic and non-metallic materials. In some cases, it is challenging to evaluate the ability of 3D printers to make fine details of parts. For such an assessment, the printing of samples showing intersections of surfaces with low angle values was considered. An experimental plan was designed and materialized to highlight the influence of different factors, such as the thickness of the deposited material layer, the printing speed, the cooling and filling conditions of the 3D-printed part, and the thickness of the sample. Samples using areas in the form of isosceles triangles with constant height or bases with the same length, respectively, were used. The mathematical processing of the experimental results allowed the determination of empirical mathematical models of the power-function type. It allowed the detection of both the direction of actions and the intensity of the influence exerted by the input factors. It is concluded that the strongest influence on the printer’s ability to produce fine detail, from the point of view addressed in the paper, is exerted by the vertex angle, whose reduction leads to a decrease in printing accuracy.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


Cerâmica ◽  
2014 ◽  
Vol 60 (356) ◽  
pp. 465-470 ◽  
Author(s):  
D. P. C. Velazco ◽  
E. F. Sancet ◽  
F. Urbaneja ◽  
M. Piccico ◽  
M. F. Serra ◽  
...  

Computer assisted designing (CAD) is well known for several decades and employed for ceramic manufacturing almost since the beginning, but usually employed in the first part of the projectual ideation processes, neither in the prototyping nor in the manufacturing stages. The rapid prototyping machines, also known as 3D printers, have the capacity to produce in a few hours real pieces using plastic materials of high resistance, with great precision and similarity with respect to the original, based on unprecedented digital models produced by means of modeling with specific design software or from the digitalization of existing parts using the so-called 3D scanners. The main objective of the work is to develop the methodology used in the entire process of building a part in ceramics from the interrelationship between traditional techniques and new technologies for the manufacture of prototypes. And to take advantage of the benefits that allow us this new reproduction technology. The experience was based on the generation of a complex piece, in digital format, which served as the model. A regular 15 cm icosahedron presented features complex enough not to advise the production of the model by means of the traditional techniques of ceramics (manual or mechanical). From this digital model, a plaster mold was made in the traditional way in order to slip cast clay based slurries, freely dried in air and fired and glazed in the traditional way. This experience has shown the working hypothesis and opens up the possibility of new lines of work to academic and technological levels that will be explored in the near future. This technology provides a wide range of options to address the formal aspect of a part to be performed for the field of design, architecture, industrial design, the traditional pottery, ceramic art, etc., which allow you to amplify the formal possibilities, save time and therefore costs when drafting the necessary and appropriate matrixes to each requirement.


2016 ◽  
Vol 62 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Adam Chromy

Abstract This paper deals with application of 3D scanning technology in medicine. Important properties of 3D scanners are discussed with emphasize on medical applications. Construction of medical 3D scanner according to these specifications is described and practical application of its use in medical volumetry is presented. Besides volumetry, such 3D scanner is usable for many other purposes, like monitoring of recovery process, ergonomic splint manufacturing or inflammation detection. 3D scanning introduces novel volumetric method, which is compared with standard methods. The new method is more accurate compared to present ones. Principles of this method are discussed in paper and its accuracy is evaluated and experimentally verified.


Author(s):  
Adam Brian Nulty

Introduction: The current generation of 3D printers are lighter, cheaper, and smaller, making them more accessible to the chairside digital dentist than ever before. 3D printers in general in the industrial and chairside setting can work with various types of materials including, metals, ceramics, and polymers. Evidence presented in many studies show that an ideal material used for dental restorations is characterised by several properties related to durability, cost-effectiveness, and high performance. This review is the second part in a 3D Printing series that looks at the literature on material science and applications for these materials in 3D printing as well as a discussion on the potential further development and future evolution in 3D printing materials. Conclusions: Current materials in 3D printing provide a wide range of possibilities for providing more predictable workflows as well as improving efficiency through less wasteful additive manufacturing in CAD/CAM procedures. Incorporating a 3D printer and a digital workflow into a dental practice is challenging but the wide range of manufacturing options and materials available mean that the dentist should be well prepared to treat patients with a more predictable and cost effective treatment pathway. As 3D printing continues to become a commonplace addition to chair side dental clinics, the evolution of these materials, in particular reinforced PMMA, resin incorporating zirconia and glass reinforced polymers offer increased speed and improved aesthetics that will likely replace subtractive manufacturing milling machines for most procedures.


2021 ◽  
Vol 4 (3–4) ◽  
Author(s):  
Gwen Robbins Schug ◽  
Kristina Killgrove ◽  
Alison Atkin ◽  
Krista Baron

Humans have interacted with the remains of our dead for aesthetic and ritual purposes for millennia, and we have utilized them for medical, educational, and scholarly pursuits for several centuries. Recently, it has become possible to use digital technologies such as 3D scanners and printers for reconstructing, representing, and disseminating bodies. At the same time, there is growing interest among academics and curators in taking a more reflexive approach to the ethical and social dimensions of conservation. This paper considers theoretical and practical aspects of ethics as they apply to the 3D scanning and printing of human skeletal remains for curation or dissemination, provides case studies from our work in the United States, and suggests guidelines for best practices.   Los seres humanos hemos interactuado con los restos humanos de nuestros muertos por razones estéticas y rituales por milenios. Asimismo, estos restos han sido utilizados para conducir investigaciones médicas, educativas, y académicas por varios siglos. Recientemente, con la ayuda de la tecnología digital de los escáneres e impresoras 3D ha sido posible reconstruir, representar, y difundir estos cuerpos. Al mismo tiempo, los académicos y los conservadores proponen ser más reflexivos al lidiar con las dimension eséticas y sociales del campo de la conservación. Este artículo considera los aspectos teóricos y prácticos de la ética de los escaneos e impresiones 3D de restos óseos humanos para su conservación y diseminación, aporta casos prácticos de nuestros trabajos investigativos en los Estados Unidos como ejemplos, y sugiere normas para una práctica adecuada. 


2021 ◽  
Vol 40 (2) ◽  
pp. 5-12
Author(s):  
Stepan A. Peleshok ◽  
Aleksandr Ya. Fisun ◽  
Andrey V. Morozov ◽  
Sergey V. Kalinin ◽  
Marina I. Eliseeva

In order to determine the features and main ways of using additive technologies within the framework of the scientific and business program of the International Military-Technical Forum Army-2020, a round table was held. In recent years, additive technologies have made a significant leap forward thanks to the improvement of electronic computing technology and software (software), the creation of a wide range of 3D printers that print using various modern methods and materials. The following industries are leading in the development of 3D printing as consumers: aircraft construction (33%), nuclear industry (30%), military-industrial complex (13%), as well as medicine (11%), education, etc. The summary contains part of the speeches of the speakers of the scientific event on the use of additive technologies in education and medicine. To achieve Russias position as one of the leaders in the global technology market, a network of educational institutions is developing and the provision of educational institutions with 3D printers. The countrys universities and, in particular, Bauman Moscow State Technical University began to develop professional competencies among graduates in the field of additive technologies, materials and equipment. Other universities use reverse engineering for research and development, the launch of new production. In medicine, models of complex elements of the human skeleton are created, in particular, individual bones and various projections of the skull, bones of the spine, hand and foot, as well as some models of organs from hard and semi-soft plastics to improve the educational process. The capabilities of 3D printing of mock-ups of organ pathologies are used for preoperative planning and rehearsal of an operation in thoracic and cardiovascular surgery, as well as for training students and doctors, modeling hemodynamics and testing medical devices. Alternative materials and methods for making splints and splints for fixing injuries and diseases of the upper limb are considered. To create ceramic products in dentistry, instead of injection molding and pressing, the technology of Lithography-based Ceramics Manufacturing printing with a suspension on foreign equipment was proposed. Three-dimensional printing has partially filled the need for personal protective equipment against the new coronavirus infection, in particular through the creation of reusable masks, various adapters, holders of face masks, linings on door handles, etc. The participants of the round table agreed that the results of scientific and innovative activities in the field of additive technologies should be tested, implemented and used in the educational process, practical activities, including military medicine (bibl.: 6 refs).


2020 ◽  
Author(s):  
Alexander Vladimirovich Dektyarev ◽  
Pavel Gennadievich Zobov ◽  
Pavel Romanovich Grishin ◽  
Vladimir Nikolaevich Morozov

Abstract The relevance of the work is determined by a fundamentally new direction of 3D printing in the manufacture of ship models for hydrodynamic testing. In this paper, we study the towing drag of a model of a small boat manufactured using additive three-dimensional printing technologies. Based on the dimensions of the 3D printers used and the technological parameters of working with them, as well as the design features of the test pool, small-sized vessels of a series of kayaks, kayaks and canoes, which are of sufficient length, but not too wide and high, were investigated as a prototype of the future model, which is ideal under the methods of additive manufacturing. A base of prototypes of vessels of this class has been compiled and a rationale has been given for the choice of the prototype vessel itself for research, including an analysis of the design of the vessels presented, the availability of design and technological documentation, as well as technological schemes for manufacturing the model. A 3D model of the vessel was developed, its optimization for 3D printing and analysis of geometric shapes for deviations from ITTC requirements. The study of deviations of the geometric shapes of the ship model from shrinkage deformations was carried out using 3D scanning with the development of a technological scheme for describing this process. When developing a 3D model, in the process of 3D printing, as well as processing the results of 3D scanning, modern software tools — FreeShip, Autodesk Inventor, Cloud Compare, and others — were used in the work. In the manufacture of the model, the new DPA adhesive compound formula was used, able to provide durable joints for PLA plastic products. It was found that the measurements prove the possibility of using 3D printing for the production of ship models for hydrodynamic testing, subject to all the nuances of the technology.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-27
Author(s):  
Nicholas Paganelli

The common understanding of the fashion industry is that it is rapidly changing and constantly on the cutting edge of what is new. Yet in reality the fashion industry does not adopt new practices or change its ways of doing business quite so easily. This article examines the successes and failures of 3D scanning as a new tool in the fashion industry. Through the analysis of three case studies it becomes clear that new technology is not an automatic guarantor of innovation or success. Analyzing the motivations behind the introduction of 3D scanning for made-to-measure clothing products is important to understanding where technology and the fashion practitioner do not necessarily communicate properly. Whereas 3D scanning promises to make made-to-measure clothing an easy and accessible service, made-to-measure and other custom clothing businesses are based upon traditional notions of luxury and craftsmanship. It is apparent through first-person interviews and observations that the current dichotomy between technology and craftsmanship has not been resolved. Creators of fashion-based technologies need to be working in tandem with traditional fashion practitioners, whose expertise is required if new technology is to reinvent the centuries-old processes of clothing production for the better. 3D scanners that have been introduced to date have yet to meet their full potential because they lack the nuanced understanding of the human body that comes from traditional clothes-making training and expertise. Researching the present status of this technology’s integration within fashion is important in understanding how digital technology is best included in the design, production, and sale of clothing products more broadly.


Sign in / Sign up

Export Citation Format

Share Document