scholarly journals Daidzein induces choriocarcinoma cell apoptosis in a dose-dependent manner via the mitochondrial apoptotic pathway

Author(s):  
Wei Zheng ◽  
Teng Liu ◽  
Rong Sun ◽  
Lei Yang ◽  
Ruifang An ◽  
...  
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4920-4920
Author(s):  
Bing Xu ◽  
Manman Deng ◽  
Zhiwu Jiang ◽  
Jie Li ◽  
Kai Chen ◽  
...  

Abstract Backgrounds: The long term prognosis of adult B-lineage acute lymphoblastic leukemia (B-ALL) is poor when compared with pediatric B-ALL. The current therapeutic regimen for adult B-ALL often results in refractory and relapsing diseases. Therefore, it is urgently needed to explore novel approaches to treat adult B-ALL. Disulfiram (DS) has been used clinically as a safe anti-alcoholism drug for over 6 decades. Recent studies demonstrated that disulfiram/cooper mixture (DS/Cu) was cytotoxic to multiple solid cancers, but its effects on B-ALL cells are still unclear. Moreover, the molecular mechanism of the cytotoxicity of DS/Cu to tumor cells was poorly defined. In this study, we investigated the effects of DS/Cu on B-ALL cells in vitro and its related cytotoxic mechanism. Results: Firstly, CCK8 assay indicated that DS/Cu markedly inhibited Nalm6 cell proliferation in a dose-dependent manner. Secondly, colony-forming assay showed that DS/Cu also abolished the clonogenicity of Nalm6 cells (P<0.001). Thirdly, FACS analyses revealed that DS/Cu mixture could induce apoptosis of Nalm6 cells, as well as primary B-ALL cells (n=16) in a dose-dependent manner. We additionally analyzed the relationship between clinical characteristics of B-ALL patients, including age, WBC counts, immunophenotype, cytogenetics, risk stratification and Ph chromosome, with the efficacy of DS/Cu on B-ALL cells. The apoptosis isolated from pro-B and cytogenetic abnormality B-ALL pastients was higher. Therefore, our results demonstrated that DS/Cu mixture could induce significant cytotoxicity against B-ALL cells in vitro. To decipher the cytotoxic mechanism of DS/Cu mixture, JC-1 staining was done and the results showed that DS/Cu mixture could significantly reduce the mitochondrial membrane potential in Nalm6 cells (P<0.01) and 7 cases of primary B-ALL cells (P<0.05). Consistently, Western Blot analysis showed that DS/Cu induced B-ALL cell apoptosis by down-regulating the expression of anti-apoptotic protein Bcl2 and Bcl-XL, as well as activating caspase-3 and its substrate PARP. Hence, our results indicated that DS/Cu induced apoptosis of B-ALL cells at least partly through the intrinsic mitochondrial apoptotic pathway. Conclusion: Our results demonstrated that DS/Cu not only significantly inhibit proliferation and clonogenicity, but also induce apoptosis of B-ALL cells in vitro.The mitochondrial apoptotic pathway might be the molecular mechanism of DS/Cu-induced apoptosis of B-ALL cells. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


2020 ◽  
Vol 10 (8) ◽  
pp. 1218-1223
Author(s):  
Xinping Chen ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Weihua Xu ◽  
Junjie Hu ◽  
...  

The aim of this study was to investigate the effect of different concentrations of novel targeted nanodrugs based on miRNA on the antitumor activity and mechanism in cervical carcinoma A549 cells. The MTT method was used to determine the effect of different concentrations of novel targeted nanodrugs based on miRNA on A549 cell proliferation, and annexin V FITC/PI double staining flow cytometry was performed to analyze the effect of these nanodrugs on A549 cell apoptosis. Western blotting was performed to observe the effect of these nanodrugs on the expression of Bax, Bcl-2, and caspase-3-related genes involved in A549 cell apoptosis. Compared with the control group, the novel targeted nanodrugs based on miRNA significantly inhibited the proliferation of A549 cells in a time- and dose-dependent manner. Results of double staining flow cytometry demonstrated that these nanodrugs could increase the apoptotic rate of A549 cells in a dose-dependent manner 48 h later. Western blotting revealed that these nanodrugs could upregulate the expression of Bax and caspase3 genes and downregulate the expression of Bcl-2 gene. Nanodrugs display an obvious antitumor activity in vitro, and the underlying mechanism may be associated with the upregulation of Bax and caspase-3 gene expression and the downregulation of Bcl-2 gene expression.


2001 ◽  
Vol 69 (3) ◽  
pp. 1650-1660 ◽  
Author(s):  
Matt J. Sylte ◽  
Lynette B. Corbeil ◽  
Thomas J. Inzana ◽  
Charles J. Czuprynski

ABSTRACT Haemophilus somnus causes pneumonia, reproductive failure, infectious myocarditis, thrombotic meningoencephalitis, and other diseases in cattle. Although vasculitis is commonly seen as a result of systemic H. somnus infections, the pathogenesis of vascular damage is poorly characterized. In this study, we demonstrated that H. somnus (pathogenic isolates 649, 2336, and 8025 and asymptomatic carrier isolates 127P and 129Pt) induce apoptosis of bovine endothelial cells in a time- and dose-dependent manner, as determined by Hoechst 33342 staining, terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick end labeling, DNA fragmentation, and transmission electron microscopy. H. somnus induced endothelial cell apoptosis in as little as 1 h of incubation and did not require extracellular growth of the bacteria. Viable H. somnus organisms induced greater endothelial cell apoptosis than heat-killed organisms. Since viableH. somnus cells release membrane fibrils and blebs, which contain lipooligosaccharide (LOS) and immunoglobulin binding proteins, we examined culture filtrates for their ability to induce endothelial cell apoptosis. Culture filtrates induced similar levels of endothelial cell apoptosis, as did viable H. somnus organisms. Heat inactivation of H. somnus culture filtrates partially reduced the apoptotic effect on endothelial cells, which suggested the presence of both heat-labile and heat-stable factors. We found thatH. somnus LOS, which is heat stable, induced endothelial cell apoptosis in a time- and dose-dependent manner and was inhibited by the addition of polymyxin B. These data demonstrate that H. somnus and its LOS induce endothelial cell apoptosis, which may play a role in producing vasculitis in vivo.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4478-4478 ◽  
Author(s):  
Noriyoshi Iriyama ◽  
Hirotsugu Hino ◽  
Shota Moriya ◽  
Masaki Hiramoto ◽  
Yoshihiro Hatta ◽  
...  

Abstract Background:Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow. D-type cyclins (CCNDs), an important family of cell cycle regulators, are thought to be implicated in multiple myeloma (MM) development because CCNDs are commonly expressed in myeloma cells. CCND is known to positively regulate the cell cycle from G1 to S-phase initiation by binding to cyclin-dependent kinase (CDK) 4/6, resulting in potentiation of myeloma cell growth. These findings suggest a possible role for CDK4/6-targeting therapy in MM, yet the details remain incompletely understood. In this regard, we investigated the biological activity of abemaciclib, a potent, highly selective CDK4/6 inhibitor, in myeloma cell lines, to elucidate the mechanisms underlying the involvement of the CCND-CDK4/6 complex in cell cycle regulation and survival. Methods:The effects of abemaciclib on myeloma cells were investigated using three myeloma cell lines, KMS12-PE (CCND1-positive and CCND2-negative), RPMI8226 (CCND1-negative and CCND2-positive), and IM-9 (both CCND1- and CCND2-positive). Cell growth was assessed by trypan blue exclusion assay. Cell cycle analysis was performed using propidium iodide (PI) and apoptosis was measured using annexin V/PI staining via flow cytometry. Cell cycle regulated proteins, including p21 and p27, and phosphorylated proteins, including STAT1, STAT3, ERK, JNK, p38, and AKT, were evaluated using a phospho-flow method. Autophagy was assessed using CYTO-ID via flow cytometry. PARP cleavage was investigated via western blotting. Clarithromycin, an antibiotic agent belonging to the macrolide class, was used as an autophagy inhibitor. Results:Abemaciclib inhibited myeloma cell growth in a dose-dependent manner in all the cell lines evaluated, with significant differences seen at a concentration of 320 nM. Annexin V/PI staining revealed that 1 μM abemaciclib showed little or no effect on apoptosis, but 3.2 μM abemaciclib induced apparent myeloma cell apoptosis, with an increase in both the early and late apoptotic fractions. Therefore, 1 and 3.2 μM of abemaciclib were used in subsequent experiments for the assessment of cell growth and apoptosis, respectively. Cell cycle analyses revealed that 1 μM abemaciclib increased the fraction of cells in G0/G1 phase and decreased the fraction in S-G2/M phase. Furthermore, this effect was associated with the upregulation of p21 and p27 in the evaluated myeloma cells. PARP cleavage was observed in KMS12-PE cells treated with 3.2 μM abemaciclib, but not 1 μM, suggesting a close connection between the degree of PARP cleavage and apoptosis in myeloma cells. Importantly, abemaciclib induced autophagy in a dose-dependent manner. However, no apparent inhibitory effect on the autophagy-related phosphorylated proteins STAT1 (Y701), STAT3 (Y705), ERK (T202/Y204), JNK (T183/Y185), p38 (T180/Y182), or AKT (Y315) was observed in myeloma cells treated with 3.2 μM abemaciclib. To investigate the role of abemaciclib-induced autophagy on myeloma cell apoptosis, we further assessed the apoptotic effect of 3.2 μM abemaciclib or 50 μg/mL clarithromycin, alone or in combination. Clarithromycin did not induce apoptosis of myeloma cells. Importantly, clarithromycin treatment in combination with abemaciclib attenuated the apoptotic effect of abemaciclib. Discussion & Conclusions: Although the underlying mechanisms conferring the level of CCND expression are known to differ greatly (e.g., CCND translocation, hyperdiploidy, or activation of upstream pathways of CCND transcription), the results of the current study indicate that the CCND-CDK4/6 complex is closely involved in myeloma cell growth and survival regardless of the CCND family member present. In addition, we demonstrate that abemaciclib exerts multiple effects, such as myeloma cell apoptosis, via the PARP pathway or autophagy, as well as cell cycle regulation. Because abemaciclib in combination with clarithromycin inhibits myeloma cell apoptosis, the autophagy induced by abemaciclib is considered to have a critical role in the induction of apoptosis, so-called "autophagic cell death." These results provide novel insights into a possible therapeutic approach using abemaciclib to target CDK4/6 in patients with MM, and offer new possibilities for combination therapy with CDK4/6 inhibitors and autophagy regulators. Disclosures Iriyama: Novartis: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau. Hatta:Novartis Pharma: Honoraria.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Shun-Fa Yang ◽  
Yih-Shou Hsieh ◽  
Tzy-Yen Chen ◽  
Hui-Ling Chiou

Extensive research results support the application of herbal medicine or natural food as an augment during therapy for various cancers. However, the effect of dioscin on tumor cells autophagy has not been clearly clarified. In this study, the unique effects of dioscin on autophagy of hepatoma cells were investigated. Results found that dioscin induced caspase-3- and -9-dependent cell apoptosis in a dose-dependent manner. Moreover, inhibition of ERK1/2 phosphorylation significantly abolished the dioscin-induced apoptosis. In addition, dioscin triggered cell autophagy in early stages. With autophagy inhibitors to hinder the autophagy process, dioscin-induced cell apoptosis was significantly enhanced. An inhibition of caspase activation did not affect the dioscin-induced LC3-II protein expression. Based on the results, we believed that while apoptosis was blocked, dioscin-induced autophagy process also diminished in Huh7 cells. In conclusion, this study indicates that dioscin causes autophagy in Huh7 cells and suggests that dioscin has a cytoprotective effect.


2016 ◽  
Vol 90 (21) ◽  
pp. 9862-9877 ◽  
Author(s):  
Haolong Cong ◽  
Ning Du ◽  
Yang Yang ◽  
Lei Song ◽  
Wenliang Zhang ◽  
...  

ABSTRACTTo survive and replicate within a host, many viruses have evolved strategies that target crucial components within the apoptotic cascade, leading to either inhibition or induction of cell apoptosis. Enterovirus 71 (EV71) infections have been demonstrated to impact the mitochondrial apoptotic pathway and induce apoptosis in many cell lines. However, the detailed mechanism of EV71-induced apoptosis remains to be elucidated. In this study, we report that EV71 2B protein (2B) localized to the mitochondria and induced cell apoptosis by interacting directly with and activating the proapoptotic protein Bax. 2B recruited Bax to the mitochondria and induced Bax conformational activation. In addition, mitochondria isolated from 2B-expressing cells that were treated with a recombinant Bax showed increased Bax interaction and cytochromec(Cytc) release. Importantly, apoptosis in cells with either EV71 infection or 2B expression was dramatically reduced in Bax knockdown cells but not in Bak knockdown cells, suggesting that Bax played a pivotal role in EV71- or 2B-induced apoptosis. Further studies indicate that a hydrophobic region of 18 amino acids (aa) in the C-terminal region of 2B (aa 63 to 80) was responsible for the location of 2B in the mitochondria. A hydrophilic region of 14 aa in the N-terminal region of 2B was functional in Bax interaction and its subsequent activation. Moreover, overexpression of the antiapoptotic protein Bcl-XLabrogates 2B-induced release of Cytcand caspase activation. Therefore, this study provides direct evidence that EV71 2B induces cell apoptosis and impacts the mitochondrial apoptotic pathway by directly modulating the redistribution and activation of proapoptotic protein Bax.IMPORTANCEEV71 infections are usually accompanied by severe neurological complications. It has also been postulated that the induction of cell apoptosis resulting from tissue damage is a possible process of EV71-related pathogenesis. In this study, we report that EV71 2B protein (2B) localized to the mitochondria and induced cell apoptosis by interacting directly with and activating the proapoptotic protein Bax. This study provides evidence that EV71 induces cell apoptosis by modulating Bax activation and reveals important clues regarding the mechanism of Cytcrelease and mitochondrial permeabilization during EV71 infection.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Wang ◽  
Chao Chen ◽  
Shiying Wang ◽  
Yong Zhang ◽  
Peihao Yin ◽  
...  

Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action.Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining.Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased.Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3154
Author(s):  
Rajmohamed Mohammed Asik ◽  
Chidhambaram Manikkaraja ◽  
Karuppusamy Tamil Surya ◽  
Natarajan Suganthy ◽  
Archunan Priya Aarthy ◽  
...  

This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of −20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document