scholarly journals Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Wang ◽  
Chao Chen ◽  
Shiying Wang ◽  
Yong Zhang ◽  
Peihao Yin ◽  
...  

Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action.Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining.Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased.Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1975
Author(s):  
Phuong Doan ◽  
Phung Nguyen ◽  
Akshaya Murugesan ◽  
Nuno R. Candeias ◽  
Olli Yli-Harja ◽  
...  

Drug resistance and tumor heterogeneity limits the therapeutic efficacy in treating glioblastoma, an aggressive infiltrative type of brain tumor. GBM cells develops resistance against chemotherapeutic agent, temozolomide (TMZ), which leads to the failure in treatment strategies. This enduring challenge of GBM drug resistance could be rational by combinatorial targeted therapy. Here, we evaluated the combinatorial effect of phenolic compound (2-(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl)phenol (THTMP), GPR17 agonist 2-({5-[3-(Morpholine-4-sulfonyl)phenyl]-4-[4-(trifluoromethoxy)phenyl]-4H-1,2,4-triazol-3-yl}sulfanyl)-N-[4-(propan-2-yl)phenyl]acetamide (T0510.3657 or T0) with the frontline drug, TMZ, on the inhibition of GBM cells. Mesenchymal cell lines derived from patients’ tumors, MMK1 and JK2 were treated with the combination of THTMP + T0, THTMP + TMZ and T0 + TMZ. Cellular migration, invasion and clonogenicity assays were performed to check the migratory behavior and the ability to form colony of GBM cells. Mitochondrial membrane permeability (MMP) assay and intracellular calcium, [Ca2+]i, assay was done to comprehend the mechanism of apoptosis. Role of apoptosis-related signaling molecules was analyzed in the induction of programmed cell death. In vivo validation in the xenograft models further validates the preclinical efficacy of the combinatorial drug. GBM cells exert better synergistic effect when exposed to the cytotoxic concentration of THTMP + T0, than other combinations. It also inhibited tumor cell proliferation, migration, invasion, colony-forming ability and cell cycle progression in S phase, better than the other combinations. Moreover, the combination of THTMP + T0 profoundly increased the [Ca2+]i, reactive oxygen species in a time-dependent manner, thus affecting MMP and leading to apoptosis. The activation of intrinsic apoptotic pathway was regulated by the expression of Bcl-2, cleaved caspases-3, cytochrome c, HSP27, cIAP-1, cIAP-2, p53, and XIAP. The combinatorial drug showed promising anti-tumor efficacy in GBM xenograft model by reducing the tumor volume, suggesting it as an alternative drug to TMZ. Our findings indicate the coordinated administration of THTMP + T0 as an efficient therapy for inhibiting GBM cell proliferation.


2021 ◽  
Author(s):  
Suxin Li ◽  
Haohao Wang ◽  
Luhao Li ◽  
Lin Li ◽  
Qingbo Meng ◽  
...  

Abstract BackgroundHepatocellular carcinoma (HCC) is one of the most commonly diagnosed malignant tumors in the world, and its recurrence and mortality rate are still in high level. In recent years, more and more inhibitors against gene targets have been found to be beneficial to survival. However, the function of homo-sapiens histone H3 associated protein kinase (GSG2) in HCC has not been completely understood. MethodsThe expression of GSG2 in HCC tissues was detected by immunohistochemical staining. The lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown GSG2 expression in HCC cell lines Hep3B2.1-7 and SK-HEP-1. Cell proliferation and colony formation were detected by MTT assay and colony formation assay, respectively, and flow cytometry assay was used to investigate the cell apoptosis in vitro. Mice xenograft model was constructed to detect the functions of GSG2 on tumor growth in vivo. Human Apoptosis Antibody Array was conducted to find the possible mechanism.ResultsGSG2 was overexpressed in HCC tissues compared with adjacent normal tissues, which was positively related to the tumor pathological stage. The knockdown of GSG2 has the functions of inhibiting the progression of HCC, including inhibiting cell proliferation and colony formation and promoting cell apoptosis. Compared with shCtrl group, the shGSG2 group expressed higher apoptotic genes such as caspase 3, caspase 8, Fas and FasL, while lower IGF1, Bcl2 and Bcl-w. ConclusionsOur study showed that knockdown of GSG2 suppresses the tumor growth in vitro and vivo. Therefore, GSG2 might play an oncogenic role in HCC.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1960 ◽  
Author(s):  
Erkang Zhang ◽  
Yani Zhang ◽  
Zhuoyan Fan ◽  
Lei Cheng ◽  
Shiwen Han ◽  
...  

Apigenin is a natural flavone with anti-inflammatory and antioxidant properties and antitumor abilities against several types of cancers. Previous studies have found that the antitumor effects of apigenin may be due to its similar chemical structure to 17β-estradiol (E2), a main kind of estrogen in women. However, the precise mechanism underlying the antitumor effects of apigenin in cervical cancer remains unknown. On the other hand, there is increasing evidence that describes a histamine role in cancer cell proliferation. In this study, we examined whether apigenin can attenuate the effects of histamine on tumors by regulating the expression level of estrogen receptors (ERs) to inhibit cervical cancer growth. Our in vitro data indicates that apigenin inhibited cell proliferation in a dose-dependent manner in human cervical cancer cells (HeLa), while histamine shows the opposite effects. After that, the xenograft model was established to explore the antitumor effects of apigenin in vivo, the results show that apigenin inhibited cervical tumor growth by reversing the abnormal ER signal in tumor tissue which was caused by histamine. We also demonstrate that apigenin inhibited cell proliferation via suppressing the PI3K/Akt/mTOR signaling pathway. Collectively, our results suggest that apigenin may inhibit tumor growth through the ER-mediated PI3K/Akt/mTOR pathway and that it can also attenuate the effects of histamine on tumors.


2020 ◽  
Author(s):  
Yaotian Hu ◽  
Zhiyi Xue ◽  
Chen Qiu ◽  
Zichao Feng ◽  
Qichao Qi ◽  
...  

Abstract Background: Nucleolar and spindle associated protein 1 (NUSAP1) is an indispensable mitotic regulator, which has been reported to be involved in the development, progression, and metastasis of several types of cancer. Here, we investigated the expression and biological function of NUSAP1 in human glioblastoma multiforme (GBM). Methods: The expression of NUSAP1 on GBM tissues and cells were determined by database analysis, immunohistochemistry and Western blot. EdU assay, transwell assay and flow cytometric analysis were performed to evaluate the effect of NUSAP1 knockdown on GBM cell proliferation, cell invasion and cell apoptosis. RNA sequencing was used to screen for downstream molecules altered in GBM cells after NUSAP1 depletion. An intracranial mice model and bioluminescent imaging were used to assess the effect of NUSAP1 on tumor growth and survival time in vivo. Results: Analysis of the molecular data in CGGA, TCGA and Rembrandt datasets demonstrated that NUSAP1 was significantly up-regulated in GBM relative to low grade gliomas and non-neoplastic brain tissue samples. Kaplan-Meier analysis indicated that patients with tumors showing high NUSAP1 expression exhibited significantly poorer survival in both CGGA (P = 0.002) and Rembrandt cohorts (P = 0.017). Analysis of RNA sequencing data from P3-cells with stable knockdown of NUSAP1 revealed topoisomerase 2A (TOP2A) as a possible molecule down-regulated by the loss of NUSAP1. SiRNA knockdown of either NUSAP1 or TOP2A in U251, T98 and GBM derived patient P3 cells inhibited GBM cell proliferation and invasion, and induced cell apoptosis. Finally, stable knockdown of NUSAP1 with shRNA led to decreased tumor growth in an orthotopic xenograft model of GBM in mice. Conclusions: Taken together, NUSAP1 gene silencing induced apoptosis possibly through the down-regulation of the candidate downstream molecule TOP2A. Interference with the expression of NUSAP1 might therefore inhibit malignant progression in GBM, and NUSAP1 might thus serve as a promising molecular target for GBM treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
Yeping Ruan

Abstract Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.


2022 ◽  
Vol 12 (4) ◽  
pp. 873-877
Author(s):  
Dongqian Xie ◽  
Zhicheng Gao ◽  
Mei Liu ◽  
Defeng Wang

Metformin is shown to have hypoglycemic effects. However, the relationship between metformin’s intervention in FFA-induced endoplasmic reticulum stress-mediated insulin resistance (IR) and insulin β-cell apoptosis under high-glucose condition remains unclear. Our study intends to assess their relationship. Human pancreatic β-cells were treated with metformin and cell proliferation and IR were detected by MTT assay along with detection of Wnt/β-catenin signaling by RT-PCR, cell cycle and apoptosis by flow cytometry. Metformin inhibited β cell proliferation which was mediated by FFA-induced endoplasmic reticulum stress in a time-dependent and dose-dependent manner as well as induced cell cycle arrest at G2/M phase. In addition, metformin inhibited β-catenin signaling activation and decreased the expression of c-myc, Dvl-2, survivin, Dvl-3, GSK-3β (p-ser9) and promoted GSK-3 (p-tyr216) and Axin-2 expression. In conclusion, metformin inhibits Wnt/β-catenin signaling and promotes FFA to induce endoplasmic reticulum stress, thereby mediating pancreatic β-cells behaviors.


2021 ◽  
Vol 11 (1) ◽  
pp. 171-175
Author(s):  
Tianlong Quan ◽  
Chunhua Zhang ◽  
Xin Song ◽  
Lu Wang

As a common malignant tumor in neurosurgery, glioma is characterized as high incidence rate, easy to invade, metastasize and recurrent. It is difficult to treat and has a poor prognosis. The gliomas pathogenesis is complex and has not been fully resolved. Therefore, finding effective molecular targets for glioma is beneficial to improve therapeutic effect. The SRY-related high mobility group box 9 (SOX9) gene involves in mammalian development and is significantly increased in glioma. However, SOX9’s role in gliomas is unclear. The glioma cell line U87 was assigned into control group, scramble group that was transfected with siRNA negative control, and SOX9 siRNA group that was transfected with SOX9 siRNA followed by analysis of SOX9 mRNA and protein level by qPCR and Western blot, cell proliferation by MTT assay, cell apoptosis by Caspase 3 activity assay, cell invasion by Transwell assay, and MMP-9 level by ELISA. SOX9 siRNA transfection significantly downregulated SOX9 mRNA and protein expressions, inhibited U87 cell proliferation, enhanced Caspase 3 activity, suppressed cell invasion of U87, decreased the secretion of MMP-9 in the supernatant, and reduced ERK1/2 and P38 phosphorylation levels (P < 0.05). SOX9 can regulate the progression of glioma by regulating ERK/P38 signaling pathway, promoting cell apoptosis, inhibiting cell proliferation, and restraining cell invasion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yangfang Ding ◽  
Qi Xie ◽  
Wenjing Liu ◽  
Zhaohai Pan ◽  
Xinmei Fan ◽  
...  

The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.


Author(s):  
Jinhua Wang ◽  
Yajing Xing ◽  
Yingying Wang ◽  
Yundong He ◽  
Liting Wang ◽  
...  

Abstract Background Cancer-initiating cell (CIC), a functionally homogeneous stem-like cell population, is resonsible for driving the tumor maintenance and metastasis, and is a source of chemotherapy and radiation-therapy resistance within tumors. Targeting CICs self-renewal has been proposed as a therapeutic goal and an effective approach to control tumor growth. BMI-1, a critical regulator of self-renewal in the maintenance of CICs, is identified as a potential target for colorectal cancer therapy. Methods Colorectal cancer stem-like cell lines HCT116 and HT29 were used for screening more than 500 synthetic compounds by sulforhodamine B (SRB) cell proliferation assay. The candidate compound was studied in vitro by SRB cell proliferation assay, western blotting, cell colony formation assay, quantitative real-time PCR, flow cytometry analysis, and transwell migration assay. Sphere formation assay and limiting dilution analysis (LDA) were performed for measuring the effect of compound on stemness properties. In vivo subcutaneous tumor growth xenograft model and liver metastasis model were performed to test the efficacy of the compound treatment. Student’s t test was applied for statistical analysis. Results We report the development and characterization of a small molecule inhibitor QW24 against BMI-1. QW24 potently down-regulates BMI-1 protein level through autophagy-lysosome degradation pathway without affecting the BMI-1 mRNA level. Moreover, QW24 significantly inhibits the self-renewal of colorectal CICs in stem-like colorectal cancer cell lines, resulting in the abrogation of their proliferation and metastasis. Notably, QW24 significantly suppresses the colorectal tumor growth without obvious toxicity in the subcutaneous xenograft model, as well as decreases the tumor metastasis and increases mice survival in the liver metastasis model. Moreover, QW24 exerts a better efficiency than the previously reported BMI-1 inhibitor PTC-209. Conclusions Our preclinical data show that QW24 exerts potent anti-tumor activity by down-regulating BMI-1 and abrogating colorectal CICs self-renewal without obvious toxicity in vivo, suggesting that QW24 could potentially be used as an effective therapeutic agent for clinical colorectal cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document