The impact of early gut microbiota modulation on the risk of child disease: alert to accuracy in probiotic studies

2015 ◽  
Vol 6 (2) ◽  
pp. 167-171 ◽  
Author(s):  
E. Isolauri ◽  
S. Salminen

The composition of the gut microbiota, and thus also the modification of the gut microbiota by specific probiotics or prebiotics early in life, may have an impact on the risk of disease in the child. Above the impact on gut microecology, probiotic effects have been attributed to restoration to normal of increased intestinal permeability, improvement of the intestine's immunological barrier functions, alleviation of the intestinal inflammatory response, and reduced generation of proinflammatory cytokines characteristic of local and systemic allergic inflammation. Recent demonstrations from experimental and clinical studies suggest that the gut microbiota is also involved in the control of body weight and energy metabolism, affecting the two main causes of obesity: energy acquisition and storage, and contributing to insulin resistance and the inflammatory state characterising obesity. Current research focuses both on characterising specific probiotic strains and on how the food matrix and the dietary content interacts with the most efficient probiotic strains. It is important to characterise each probiotic to species and strain level and to select strains with documented properties, the probiotic potential being strain-specific. As any proof of causality requires clinical intervention studies in humans in different populations, rigorous and detailed documentation will enhance reproducibility and circumvent confusion.

2015 ◽  
Vol 114 (11) ◽  
pp. 1756-1765 ◽  
Author(s):  
J. M. G. Gomes ◽  
J. A. Costa ◽  
R. C. Alfenas

AbstractEvidence from animal and human studies has associated gut microbiota, increased translocation of lipopolysaccharide (LPS) and reduced intestinal integrity (II) with the inflammatory state that occurs in obesity and type 2 diabetes mellitus (T2DM). Consumption of Ca may favour body weight reduction and glycaemic control, but its influence on II and gut microbiota is not well understood. Considering the impact of metabolic diseases on public health and the role of Ca on the pathophysiology of these diseases, this review critically discusses possible mechanisms by which high-Ca diets could affect gut microbiota and II. Published studies from 1993 to 2015 about this topic were searched and selected from Medline/PubMed, Scielo and Lilacs databases. High-Ca diets seem to favour the growth of lactobacilli, maintain II (especially in the colon), reduce translocation of LPS and regulate tight-junction gene expression. We conclude that dietary Ca might interfere with gut microbiota and II modulations and it can partly explain the effect of Ca on obesity and T2DM control. However, further research is required to define the supplementation period, the dose and the type of Ca supplement (milk or salt) required for more effective results. As Ca interacts with other components of the diet, these interactions must also be considered in future studies. We believe that more complex mechanisms involving extraintestinal disorders (hormones, cytokines and other biomarkers) also need to be studied.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Anastasia Mantziari ◽  
Satu Tölkkö ◽  
Artur C. Ouwehand ◽  
Eliisa Löyttyniemi ◽  
Erika Isolauri ◽  
...  

Preterm delivery complications are the primary cause of death among children under the age of five. Preventive strategies include the use of pasteurized donor human milk (DHM), its fortification with human milk fortifiers (protein supplements), and supplementation with probiotics. Our aim was to examine the impact of DHM and fortified DHM (FDHM) on the mucus adhesion properties of two widely used probiotics. The study covered two forms of human milk fortifier, liquid and powdered, with or without probiotics and storage at 4 °C for 24 h. To test the adhesion properties of the probiotic strains, DHM+probiotics and FDHM+probiotics were prepared and added to immobilized mucus isolated from the stool of healthy Finnish infants. The probiotic adhesion was then measured by liquid scintillation. Our results suggest that addition of liquid or powdered human milk fortifier in donor human milk had no impact on probiotic adhesion. In addition, given the increased adhesion of probiotics suspended in buffer, other matrices should be further studied. These factors need to be considered when designing future intervention strategies using probiotics in preterm infants.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Sandra Martín-Peláez ◽  
Naomi Cano-Ibáñez ◽  
Miguel Pinto-Gallardo ◽  
Carmen Amezcua-Prieto

The gut microbiota is a key factor in the correct development of the gastrointestinal immune system. Studies have found differences between the gut microbiota of newborns delivered by cesarean section compared to those vaginally delivered. Our objective was to evaluate the effect of ingestion of probiotics, prebiotics, or synbiotics during pregnancy and/or lactation on the development of the gut microbiota of the C-section newborns. We selected experimental studies in online databases from their inception to October 2021. Of the 83 records screened, 12 met the inclusion criteria. The probiotics used belonged to the genera Lactobacillus, Bifidobacterium, Propionibacterium, and Streptococcus, or a combination of those, with dosages varying between 2 × 106 and 9 × 1011 CFU per day, and were consumed during pregnancy and/or lactation. Probiotic strains were combined with galacto-oligosaccharides, fructo-oligosaccharides, or bovine milk-derived oligosaccharides in the synbiotic formulas. Probiotic, prebiotic, and synbiotic interventions led to beneficial gut microbiota in cesarean-delivered newborns, closer to that in vaginally delivered newborns, especially regarding Bifidobacterium colonization. This effect was more evident in breastfed infants. The studies indicate that this beneficial effect is achieved when the interventions begin soon after birth, especially the restoration of bifidobacterial population. Changes in the infant microbial ecosystem due to the interventions seem to continue after the end of the intervention in most of the studies. More interventional studies are needed to elucidate the optimal synbiotic combinations and the most effective strains and doses for achieving the optimal gut microbiota colonization of C-section newborns.


2019 ◽  
Vol 39 (1) ◽  
pp. 267-290 ◽  
Author(s):  
Carlos Gómez-Gallego ◽  
Izaskun García-Mantrana ◽  
Cecilia Martínez-Costa ◽  
Seppo Salminen ◽  
Erika Isolauri ◽  
...  

According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants’ health outcomes in the short- and long-term.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1297
Author(s):  
Monika Kvakova ◽  
Izabela Bertkova ◽  
Jana Stofilova ◽  
Tor C. Savidge

Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.


2020 ◽  
Vol 19 (6) ◽  
pp. 466-477
Author(s):  
Saïd Boujraf ◽  
Rachida Belaïch ◽  
Abdelkhalek Housni ◽  
Badreeddine Alami ◽  
Tariq Skalli ◽  
...  

Objective: The aim of this paper is to demonstrate the impact of hemodialysis (HD) using synthetic Helixone membrane on brain functional control reorganization and plasticity in the cortical area generated while Oxidative Stress (OS) would be the main impacting agent. Methods: Indeed, 9 chronic HD patients underwent identical brain BOLD-fMRI assessment using the motor paradigm immediately before and after the same HD sessions. To assess the oxidative stress, the same patients underwent biological-assessment, including Malondialdehyde (MDA) and Total- Antioxidant-Activity (TAOA) reported in earlier papers. Results: BOLD-fMRI maps of motor areas obtained from HD-patients before and after HD sessions revealed a significant enhancement of activation volume of the studied motor cortex after HD reflecting brain plasticity. Results were correlated with OS assessed by the measurement of MDA and TAOA; this correlation was close to 1. Conclusion: Indeed, HD enhances the inflammatory state of brain tissues reflected by the increased OS. The functional brain reaction demonstrated a functional activity reorganization to overcome the inflammatory state and OS enhanced by HD process. This functional activity reorganization reveals brain plasticity induced by OS originated by HD.


2020 ◽  
pp. flgastro-2020-101563
Author(s):  
Stephanie Shields ◽  
Allan Dunlop ◽  
John Paul Seenan ◽  
Jonathan Macdonald

COVID-19 has dominated life in 2020 with, at the time of writing, over 4.9M global cases and >320 000 deaths. The impact has been most intensely felt in acute and critical care environments. However, with most UK elective work postponed, laboratory testing of faecal calprotectin halted due to potential risk of viral transmission and non-emergency endoscopies and surgeries cancelled, the secondary impact on chronic illnesses such as inflammatory bowel disease (IBD) is becoming apparent. Data from the Scottish Biologic Therapeutic Drug Monitoring (TDM) service shows a dramatic drop in TDM testing since the pandemic onset. April 2020 saw a 75.6% reduction in adalimumab testing and a 36.2% reduction in infliximab testing when compared with February 2020 data, a reduction coinciding with the widespread cancellation of outpatient and elective activity. It is feared that disruption to normal patterns of care and disease monitoring of biologic patients could increase the risk of disease flare and adverse clinical outcomes. Urgent changes in clinical practice have been instigated to mitigate the effects of the pandemic on routine clinical care. Further transformations are needed to maintain safe, effective, patient-centred IBD care in the future.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Sign in / Sign up

Export Citation Format

Share Document