Metal Ion Separation with Functional Adsorbents and Phytoremediation Used as Sustainable Technologies

Author(s):  
Minoru Satoh

The amounts of “Electronic wastes” including heavy metals are increasing day by day. Such waste is in the rich resource of various metals having the precious metals. Therefore, these wastes are considered as urban mine, if people successfully can separate them to each source. In sustainable viewpoints, separation technologies applied for such electronics waste are essential and important to efficiently recover various metals at a low concentration from these sources. This chapter reviews functional adsorbents made of polymers, ionic liquid, and dendrimer. Also, membrane technology is introduced as separation toll for heavy metals. Among them, topics of phytoremediation are made as an effective sustainable method, utilizing certain plants to clean up the environmental contaminants. Here, plants are able to remove harmful chemicals such as metals, which are present in the soil, when their roots absorb water and nutrients from the contaminated soil, sediment and surface, or ground water. The contaminants are removed by trapping them into harvestable plant biomass. Furthermore, cleanup methods of environments and recovery of precious and rare metals are mentioned for sources of urban and submarine mines with low cost and high recovery efficiency.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2008 ◽  
Vol 6 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Jana Dytrtová ◽  
Ivana Šestáková ◽  
Michal Jakl ◽  
Jiřina Száková ◽  
Daniela Miholová ◽  
...  

AbstractIn the soil solutions obtained in situ with suction cups from soils (Cambisol and Fluvisol) of pot experiment with Salix smithiana Smith, Lolium perenne L. and Thlaspi caerulescens J. & C. Presl heavy metals species (Cd, Pb and Cu) were assayed by differential pulse anodic stripping voltammetry and diffusive gradient in thin films. Prediction of accumulation performed best at free metal ion concentrations in unchanged pH (in 10−3 mol L−1 NaClO4 base electrolyte). The speciation provided by differential pulse anodic stripping voltammetry according to pH can provide a detailed description of the soil solution matrix. The concentration of free metals in unchanged pH represents a small part of the total content and varied from 0.04 to 0.75% with two exceptions found for accumulating plants (the content of Cd2+ in the soil solution from T. caerulescens was about 6% and the content of Cu2+ in the soil solution from S. smithiana was about 30%). The available concentration as determined by diffusive gradient in thin films was not in correlation with the heavy metals concentration in plant biomass.


2021 ◽  
Vol 77 (1) ◽  
pp. 76-84
Author(s):  
Amany Madkour ◽  
Mahmoud Dar

  Biosorption is the most favourable technique for the treatment of heavy metals as it is fast, powerful, and low cost, it takes place in a wide range of temperatures as well as it can be used for almost all types of heavy metals. In this study, the biosorption technique adsorbs Cu2+ and Zn2+ on the dried macroalgae (Halimeda opuntia and Turbinaria turbinata) in a batch system. Experimental parameters affecting the biosorption process are initial metal ion concentrations (5, 10, 15 and 25 mg/L), pH between (4.5 and 5.2), biomass dosage (1 gm) and agitation speed 150 rpm applied at contact time (30, 60 and 120 min). The significant-high average removals of Cu2+ by H.opuntia (> 96%) were recorded in concentrations of 10, 15 and 25 ppm at 120 min and the highest average removals by T.turbinata (81.07%, 78.32% and 74.7%) were recorded in concentrations of 5, 10 and 15 ppm at 120 min. The lowest average removal of Cu2+ 89.22% was recorded by H.opuntia and 49.9% was recorded by T.turbinata in a concentration of 25 ppm at 30 min. In the same way, significant-high average removals (>94%) were recorded in a concentration of 10 ppm at 120 min for H.opuntia and in a concentration of 5 ppm by at 60 min for T.turbinata. In conclusion, the dead biomass of marine algae can provide a promising and low-cost technique for removing heavy metal pollutants in medical industries.


STED JOURNAL ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Samuel Obeng Apori ◽  
Kofi Atiah ◽  
Emmanuel Hanyabui ◽  
John Byalebeka

Heavy metals are considered to be one of the major contaminants of water in recent years due to their non-biodegradable property; hence making them toxic and bioaccumulate to living organisms. Conventional methods such us chemical precipitation, physical treatment through ion exchange are used for removing heavy metal ions from water. These methods are expensive and attributed to incomplete metals removal and high cost of treatment. In recent years, researchers have found alternative low cost and effective method for removal of toxic metals through biosorption process using biological materials. Moringa oleifera seeds is one of the biological materials which has effective adsorption capacity for removal of heavy metals from water and wastewater. In this article, the seeds of Moringa oleifera seeds as a low-cost biosorbent for removal of heavy metals is presented. Moringa oleifera seeds is inexpensive material that contains amino acids. The amino acid is a major constituent of the functional groups that aids in greater ability of heavy metals removal through metal ion exchange or complexation, which is mainly affected by pH, biosorbent dosage, and contact time. Moringa oleifera seeds residues have a greater capacity to absorb heavy metals in a single solution compared to multi ion solution.


Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


2013 ◽  
Vol 12 (3) ◽  
pp. 239-247

The removal of heavy metals from wastewaters is a matter of paramount importance due to the fact that their high toxicity causes major environmental pollution problems. One of the most efficient, applicable and low cost methods for the removal of toxic metals from aqueous solutions is that of their adsorption on an inorganic adsorbent. In order to achieve high efficiency, it is important to understand the influence of the solution parameters on the extent of the adsorption, as well as the kinetics of the adsorption. In the present work, the adsorption of Cu(II) species onto TiO2 surface was studied. It was found that the adsorption is a rapid process and it is not affected by the value of ionic strength. In addition, it was found that by increasing the pH, the adsorbed amount of Cu2+ ions and the value of the adsorption constant increase, whereas the value of the lateral interaction energy decreases.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2021 ◽  
pp. 1-7
Author(s):  
Diane Stephenson ◽  
Reham Badawy ◽  
Soania Mathur ◽  
Maria Tome ◽  
Lynn Rochester

The burden of Parkinson’s disease (PD) continues to grow at an unsustainable pace particularly given that it now represents the fastest growing brain disease. Despite seminal discoveries in genetics and pathogenesis, people living with PD oftentimes wait years to obtain an accurate diagnosis and have no way to know their own prognostic fate once they do learn they have the disease. Currently, there is no objective biomarker to measure the onset, progression, and severity of PD along the disease continuum. Without such tools, the effectiveness of any given treatment, experimental or conventional cannot be measured. Such tools are urgently needed now more than ever given the rich number of new candidate therapies in the pipeline. Over the last decade, millions of dollars have been directed to identify biomarkers to inform progression of PD typically using molecular, fluid or imaging modalities). These efforts have produced novel insights in our understanding of PD including mechanistic targets, disease subtypes and imaging biomarkers. While we have learned a lot along the way, implementation of robust disease progression biomarkers as tools for quantifying changes in disease status or severity remains elusive. Biomarkers have improved health outcomes and led to accelerated drug approvals in key areas of unmet need such as oncology. Quantitative biomarker measures such as HbA1c a standard test for the monitoring of diabetes has impacted patient care and management, both for the healthcare professionals and the patient community. Such advances accelerate opportunities for early intervention including prevention of disease in high-risk individuals. In PD, progression markers are needed at all stages of the disease in order to catalyze drug development—this allows interventions aimed to halt or slow disease progression, very early, but also facilitates symptomatic treatments at moderate stages of the disease. Recently, attention has turned to the role of digital health technologies to complement the traditional modalities as they are relatively low cost, objective and scalable. Success in this endeavor would be transformative for clinical research and therapeutic development. Consequently, significant investment has led to a number of collaborative efforts to identify and validate suitable digital biomarkers of disease progression.


The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 5184-5189 ◽  
Author(s):  
Rudy J. Wojtecki ◽  
Alexander Y. Yuen ◽  
Thomas G. Zimmerman ◽  
Gavin O. Jones ◽  
Hans W. Horn ◽  
...  

The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using hexahydrotriazines as a chemical indicator and a low cost fluorimeter-based detection system.


Sign in / Sign up

Export Citation Format

Share Document