scholarly journals Exogenous application of salicylic acid to control coffee rust

2021 ◽  
Vol 43 ◽  
pp. e54495
Author(s):  
Luciano Abi Rached Tannuri ◽  
Everaldo Antônio Lopes ◽  
Willian Rodrigues Macedo ◽  
Ellen Júnia Canedo

The exogenous application of salicylic acid can induce plant resistance against pathogens. However, little is known about the potential uses of this bioregulator for controlling coffee diseases. In this study, we assessed the effect of applying salicylic acid (SA – 150 mg L-1) on the management of coffee rust (Hemileia vastatrix) in a 7-year-old coffee plantation with low crop load (651.6 kg ha-1 in 2017). For comparison, plants were sprayed with protectant fungicide (copper hydroxide – CH) and standard fungicides (SF) used by local farmers (boscalid, pyraclostrobin + epoxiconazole, and copper hydroxide). Non-treated plants were included as a negative control. Five monthly applications were performed from November 2016 to March 2017. Rust incidence and severity, defoliation, and growth of plagiotropic branches were evaluated monthly. The activity of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and total proteins was assessed one day after the first, third, and fifth product applications. Compared to untreated plants, SA reduced the severity and incidence of rust from 36.3 to 54.7%, while CH and SF reduced disease from 31.8 to 54.6% and from 83.8 to 88%, respectively. SA reduced defoliation by 54.1%. SA increased the concentration of CAT, APX, and SOD after the first application. However, this effect was not observed after subsequent applications. Foliar application of SA reduces the severity and incidence of coffee rust and defoliation in plants with a low crop load.

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2066
Author(s):  
Mohammed Mohi-Ud-Din ◽  
Dipa Talukder ◽  
Motiar Rohman ◽  
Jalal Uddin Ahmed ◽  
S. V. Krishna Jagadish ◽  
...  

Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 μM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 μM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.


2017 ◽  
Vol 20 (0) ◽  
Author(s):  
Pedro Henrique Gorni ◽  
Matheus de Oliveira Brozulato ◽  
Renan da Silva Lourenção ◽  
Eliana Cristina Generoso Konrad

Abstract Fennel is a medicinal and aromatic plant that is commonly used in Brazilian cuisine and in the manufacture of cosmetics. The exogenous application of salicylic acid (SA) can act on the hormonal action stimulating plant growth and development and the induction of plant defense responses under stressful conditions. The objective of this study was to determine the effect of the foliar application of SA on the production of biomass and synthesis of secondary compounds in fennel plants. For this purpose, an experiment was carried out in potted plants in a greenhouse with the application of SA at concentrations of 0, 0.25, 0.50 and 1.00 mM, 20 days and 90 days after transplanting the seedlings to the pots. The effect of SA on the metabolism of the fennel plants was evaluated using growth and biochemical parameters. The exogenous application of SA increased the plant shoots dry weight at the concentration of 0.50 mM, whereas an improved dry root mass and root/shoot ratio was achieved with the concentration of 0.25 mM. The elicitor effect was observed at 0.25 mM of SA, resulting in greater economic value of the biomass due to the higher production of secondary compounds, such as phenolic compounds and flavonoids. In addition, an increase in antioxidant activity of the plant extracts and of the essential oil content of the species was obtained at the concentration of 1.00 mM.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


2021 ◽  
Vol 280 ◽  
pp. 109904
Author(s):  
Remi Chakma ◽  
Arindam Biswas ◽  
Pantamit Saekong ◽  
Hayat Ullah ◽  
Avishek Datta

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 420 ◽  
Author(s):  
Shashidhar K. Shankarappa ◽  
Samuel J. Muniyandi ◽  
Ajay B. Chandrashekar ◽  
Amit K. Singh ◽  
Premaradhya Nagabhushanaradhya ◽  
...  

Lentil (Lens culinaris) is an important winter season annual legume crop known for its highly valued seed in human and animal nutrition owing to its high lysine and tryptophan content. Shortage of water during the crop growth period has become the major impediment for cultivation of pulses in rice fallow in particular. Under such conditions, the application of hydrogel can be a potential alternative to improve photosynthetic efficiency, assimilate partitioning, and increase growth and yield. A field experiment was conducted from November to February during 2015–16 to 2017–18 on clay loam soil that was medium in fertility and acidic in reaction (pH 5.4) at Central Agricultural University, Imphal, Manipur. The experiment was laid out in split plot design with three replications. There were three hydrogel levels in total in the main plot and foliar nutrition with five different nutrient sprays in sub-plots, together comprising 15 treatment combinations. The data pooled over three years, 2015–2018, revealed that application of hydrogel at 5 kg/ha before sowing recorded a significantly greater number of pods per plant (38.0) and seed yield (1032.1 kg/ha) over the control. Foliar application of nutrients over flower initiation and pod development had a positive effect on increasing the number of pods per plant eventually enhanced the seed yield of lentil. Foliar application of either 0.5% NPK or salicylic acid 75 ppm spray at flower initiation and pod development stages recorded significantly more pods per plant over other nutrient treatments. Further, the yield attributed improved because of elevated growth in plant. Significantly maximum seed yield (956 kg/ha) recorded in the NPK spray of 0.5% remained on par with salicylic acid 75 ppm (939 kg/ha) over the rest of the treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 775
Author(s):  
Alaa El-Den Roshdy ◽  
Abdullah Alebidi ◽  
Khalid Almutairi ◽  
Rashid Al-Obeed ◽  
Ahmed Elsabagh

The influence of salicylic acid (SA) on growth, yield, fruits’ quality and enzymes’ activities was monitored in strawberry plants cv. Camarosa grown under salinity stress via two pot experiments in two successive years of 2018 and 2019. The examined concentrations of SA were 30, 60, and 90 ppm, which foliary applied in addition to control (sprayed with water), while the used levels of salinity were 20, and 40 mM as NaCl as irrigation application in addition to control (without salinity). The results showed a significant effect of salinity at 40 mM where the mean values of shoot fresh and dry weights, chlorophyll, leaves’ NPK, yield plant−1, yield ha−1, and fruits’ ascorbic acid were significantly decreased. However, the 40 mM salinity resulted in a significant increase in leaves’ content of Na and proline as well as catalase (CAT) and peroxidase (POD) enzymes’ activity and the fruits’ TSS and acidity. The application with 90 ppm SA was found to be the most significant positive treatment for all of the studied characters except the Na leaves’ content. Regarding tolerance index percentages (STI%), the high values of CAT, POD, and proline referred to the ability to use them as indicators for strawberry salinity response in other physiological and plant breeding studies. The findings of this study suggest that the 90 ppm SA foliar application can ameliorate the negative effect of salinity on the growth of strawberry cv. Camarosa.


2008 ◽  
Vol 43 (8) ◽  
pp. 1017-1023 ◽  
Author(s):  
Daniel Oliveira Jordão do Amaral ◽  
Marleide Magalhães de Andrade Lima ◽  
Luciane Vilela Resende ◽  
Márcia Vanusa da Silva

The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill.), during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH) technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.


Sign in / Sign up

Export Citation Format

Share Document