Modal Analysis and Design of a Vertically Movable Gate Field Effect Transistor (VMGFET) Proposed for Low-Frequency Sensing Applications

2012 ◽  
Vol 268-270 ◽  
pp. 1538-1543
Author(s):  
Justin Williams ◽  
William B.D. Forfang ◽  
Byoung Hee You ◽  
In Hyouk Song

The objective of this study is to design and optimize a vertically movable gate field effect transistor (VMGFET) - suitable for low-frequency, high-sensitivity applications - with an emphasis on modal analysis of the suspended gate structure, optimization of mesh density within the employed finite element analysis software, and optimization of the moveable gate dimensions given its relationship with fabrication complexity and the structure’s resonant frequencies. The methods of design, optimization, and analysis were carried out with COMSOL Multiphysics 4.2a under the assumption of no damping with free vibrations. The results indicate optimal dimensions of the suspended gate structure - given constraints on size, resonance, and fabrication complexity - which suggest a beam thickness of 3 µm and a beam width of 15 µm, yielding an upper limit of input force frequencies near 2 kHz.

2020 ◽  
Vol 29 (11) ◽  
pp. 2050181
Author(s):  
Cross T. Asha Wise ◽  
G. R. Suresh ◽  
M. Palanivelen ◽  
S. Saraswathi

Mounting electronics circuits on a plastic flexible substrate are pertinent for biosensing applications due to their resilient nature, minimal processing conditions, lightweight and low cost. Organic Field-Effect Transistors (OFET)-based amplifier for flexible biosensors have been proposed in this paper. To design flexible biosensing circuits, Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) with Polycyclic Hydrocarbon is a suitable choice. It is a big challenge to build an organic circuit using graphene electrode due to its poor performance of [Formula: see text]-type OFET, therefore it is advisable to use Pentacene as [Formula: see text]- and [Formula: see text]-type Organic semiconductors. Pentacene being one among the foremost totally investigated conjugated organic molecules with a high application potential because the hole mobility in OFETs goes up to 0.2[Formula: see text]cm2/(Vs), which exceeds that of amorphous silicon. In biosignal process, the first and most important step is to amplify the biosignal for further processing. Operational Transconductance Amplifier (OTA) plays an essential role in biological signal measuring instruments like EEG, ECG, EMG modules which measure the heart, muscle and brain activities. The OTA designed using this OFET is adaptable for flexible sensor circuits and also it derives the transconductance of 67 which is similar to silicon OTA. The amplifier designed here gives unit gain of 42[Formula: see text]dB with a frequency of 195[Formula: see text]Hz which is suitable for low-frequency biosignal processing applications.


2003 ◽  
Vol 12 (4) ◽  
pp. 389-393
Author(s):  
Yang Lin-An ◽  
Yu Chun-Li ◽  
Zhang Yi-Men ◽  
Zhang Yu-Ming

2020 ◽  
Vol 20 (8) ◽  
pp. 4699-4703
Author(s):  
Hyun-Dong Song ◽  
Hyeong-Sub Song ◽  
Sunil Babu Eadi ◽  
Hyun-Woong Choi ◽  
Ga-Won Lee ◽  
...  

In this work, noise mechanism of a tunneling field-effect transistor (TFET) on a silicon-on-insulator substrate was studied as a function of temperature. The results show that the drain current and subthreshold slope increase with increase in temperature. This temperature dependence is likely caused by the generation of greater current flow owing to decreased silicon band gap and leakage. Further, the TFET noise decreases with increase in temperature. Therefore, the effective tunneling length between the source and the channel appears to decrease and Poole–Frenkel tunneling occurs.


Sign in / Sign up

Export Citation Format

Share Document