Design of Dynamic Binary Circuits Based on Floating-Gate Technology

2013 ◽  
Vol 347-350 ◽  
pp. 1323-1327
Author(s):  
Xiao Hui Hu ◽  
Guo Qiang Hang ◽  
Yang Yang ◽  
Xiao Hu You

The dynamic circuit technology can decrease the whole power consumption, and the Floating-gate technology can simplify the circuit structure, which will also decrease the area and power consumption of IC. Taking the advantages of both ,we propose a new dynamic binary circuit based on floating-gate technology. The HSPICE simulation results using TSMC 0.35μm double-polysilicon CMOS technology validate the correctness of the proposed approach, and the proposed circuits also have considerable simpler structures.

2002 ◽  
Vol 11 (01) ◽  
pp. 51-55
Author(s):  
ROBERT C. CHANG ◽  
L.-C. HSU ◽  
M.-C. SUN

A novel low-power and high-speed D flip-flop is presented in this letter. The flip-flop consists of a single low-power latch, which is controlled by a positive narrow pulse. Hence, fewer transistors are used and lower power consumption is achieved. HSPICE simulation results show that power dissipation of the proposed D flip-flop has been reduced up to 76%. The operating frequency of the flip-flop is also greatly increased.


Author(s):  
Kanan Bala Ray ◽  
Sushanta Kumar Mandal ◽  
Shivalal Patro

<em>In this paper floating gate MOS (FGMOS) along with sleep transistor technique and leakage control transistor (LECTOR) technique has been used to design low power SRAM cell. Detailed investigation on operation, analysis and result comparison of conventional 6T, FGSRAM, FGSLEEPY, FGLECTOR and FGSLEEPY LECTOR has been done. All the simulations are done in Cadence Virtuoso environment on 45 nm standard CMOS technology with 1 V power supply voltage. Simulation results show that FGSLEEPY LECTOR SRAM cell consumes very low power and achieves high stability compared to conventional FGSRAM Cell</em>


Author(s):  
Abderrezak Marzaki ◽  
V. Bidal ◽  
R. Laffont ◽  
W. Rahajandraibe ◽  
J-M. Portal ◽  
...  

This paper presents different low voltage adjustable CMOS Schmitt trigger using DCG-FGT transistor. Simple circuits are introduced to provide flexibility to program the hysteresic threshold in this paper. The hysteresis can be controlled accurately at a large voltage range. The proposed Schmitt trigger have been designed using 90nm 1.2V CMOS technology and simulated using Eldo with PSP device models. The simulation results show rail-to-rail operation and adjustable switching voltages <em>V<sub>TH- </sub></em>(low switching voltage) and <em>V<sub>TH+ </sub></em>(high switching voltage).


2014 ◽  
Vol 23 (02) ◽  
pp. 1450023
Author(s):  
MOHAMED O. SHAKER ◽  
MAGDY A. BAYOUMI

A novel low power clock gated successive approximation register (SAR) is proposed. The new register is based on gating the clock signal when there is no data switching activity. It operates with fewer transistors and no redundant transitions which makes it suitable for low power applications. The proposed register consisting of 8 bits has been designed up to the layout level with 1 V power supply in 90 nm CMOS technology and has been simulated using SPECTRE. Simulation results have shown that the proposed register saves up to 75% of power consumption.


2018 ◽  
Vol 232 ◽  
pp. 04056
Author(s):  
Shulin LIU ◽  
Jinjun PEI ◽  
Ning DUAN ◽  
Shaoxiong ZHANG ◽  
Rui LIAN

Based on the research of the development of synchronous rectification technology, this paper proposes a circuit structure of bootstrap synchronous rectifier chip. Firstly, through the research of synchronous rectification technology, the architecture of synchronous rectification chip is determined. After the system design is completed, the internal units of the chip are designed in blocks under the 0.35 μm BCD process, and the specific circuit design is completed. Each unit has been verified by HSPICE simulation and has reached the specified index. The system constructed by this has also been verified by simulation, and the simulation results are consistent with the expected results, indicating that the main design functions of the circuit have been realized.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Fabian Khateb ◽  
Montree Kumngern ◽  
Spyridon Vlassis ◽  
Costas Psychalinos ◽  
Tomasz Kulej

This paper presents a new CMOS structure for a fully balanced differential difference amplifier (FB-DDA) designed to operate from a sub-volt supply. This structure employs the bulk-driven quasi-floating-gate (BD-QFG) technique to achieve the capability of an ultra-low voltage operation and an extended input voltage range. The proposed BD-QFG FB-DDA is suitable for ultra-low-voltage low-power applications. The circuit is designed with a single supply of 0.5 V and consumes only 357 nW of power. The proposed circuit was simulated in a 0.18-μm TSMC CMOS technology and the simulation results prove its functionality and attractive parameters. An application example of a state variable filter is also presented to confirm the usefulness of the proposed BD-QFG FB-DDA.


Author(s):  
P.A. Gowri Sankar ◽  
G. Sathiyabama

The continuous scaling down of metal-oxide-semiconductor field effect transistors (MOSFETs) led to the considerable impact in the analog-digital mixed signal integrated circuit design for system-on-chips (SoCs) application. SoCs trends force ADCs to be integrated on the chip with other digital circuits. These trends present new challenges in ADC circuit design based on existing CMOS technology. In this paper, we have designed and analyzed a 3-bit high speed, low-voltage and low-power flash ADC at 32nm CNFET technology for SoC applications. The proposed ADC utilizes the Threshold Inverter Quantization (TIQ) technique that uses two cascaded carbon nanotube field effect transistor (CNFET) inverters as a comparator. The TIQ technique proposed has been developed for better implementation in SoC applications. The performance of the proposed ADC is studied using two different types of encoders such as ROM and Fat tree encoders. The proposed ADCs circuits are simulated using Synopsys HSPICE with standard 32nm CNFET model at 0.9 input supply voltage. The simulation results show that the proposed 3 bit TIQ technique based flash ADC with fat tree encoder operates up to 8 giga samples per second (GSPS) with 35.88µW power consumption. From the simulation results, we observed that the proposed TIQ flash ADC achieves high speed, small size, low power consumption, and low voltage operation compared to other low power CMOS technology based flash ADCs. The proposed method is sensitive to process, temperature and power supply voltage variations and their impact on the ADC performance is also investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ziad Alsibai ◽  
Salma Bay Abo Dabbous

A new ultra-low-voltage (LV) low-power (LP) bulk-driven quasi-floating-gate (BD-QFG) operational transconductance amplifier (OTA) is presented in this paper. The proposed circuit is designed using 0.18 μm CMOS technology. A supply voltage of ±0.3 V and a quiescent bias current of 5 μA are used. The PSpice simulation result shows that the power consumption of the proposed BD-QFG OTA is 13.4 μW. Thus, the circuit is suitable for low-power applications. In order to confirm that the proposed BD-QFG OTA can be used in analog signal processing, a BD-QFG OTA-based diodeless precision rectifier is designed as an example application. This rectifier employs only two BD-QFG OTAs and consumes only 26.8 μW.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550109
Author(s):  
Meilin Wan ◽  
Zhenzhen Zhang ◽  
Wang Liao ◽  
Kui Dai ◽  
Xuecheng Zou

A dual-modulus prescaler (divide-by-2/3) using complementary clocking NMOS-like blocks is presented in this paper. The prescaler can work properly for both differential and single phase input clocks. For differential input clocks, the prescaler achieves not only high operating frequency but also low power consumption since it consists of only five NMOS-like blocks. For single phase input clock, the operating frequency range is further expanded by utilizing a complementary clocks generator. Simulation results show that, in 180-nm standard CMOS technology, the proposed prescaler achieves operating frequency range of 1.7–9.0 GHz for differential input clocks and 0.5–10.2 GHz for single phase input clock. And the maximum power consumption from 1.8 V power supply is 0.92 mW and 1.32 mW for differential and single phase input clocks respectively.


2021 ◽  
Author(s):  
Daniel Junehee Lee

file:///C:/Users/MWF/Downloads/Lee, Daniel Junehee.The 8-bit digital-to-time converter (DTC) to be used for a time-mode successive-approximation register analog-to-digital converter (SAR ADC) with a minimum power consumption and silicon area is presented. The architecture and the drawbacks of a conventional voltage-mode SAR ADC are discussed. The principle of time-mode circuits and benefits of their applications to mixed-signal circuits are explained. The architecture of a time-mode SAR ADC is presented. The need for an area and power-efficient DTC to be used for a time-mode SAR ADC is discussed. The principle of a DTC is explained and prior works on a DTC are reviewed. The principle of a phase interpolator (PI), to be used for a DTC, is explained and prior works on digital PIs are reviewed. The design of the proposed DTC is presented. Each block of the proposed DTC is explained using schematic and layout views. Optimal slope of the input of the PI and the condition for linear phase interpolation are investigated. Simulation results of the proposed DTC designed in TSMC 65 nm 1.0 V CMOS technology are provided. According to simulation results with BSIM4.4 device models only, the time resolution of 0.33 ps, a maximum operation frequency of 2.53 G Hz, the power consumption of 1.38 mW, and peak differential nonlinearity (DNL) and integral nonlinearity (INL) less than 0.14 least significant bit (LSB) and 0.49 LSB, respectively, for a nominal process (TT) and a temperature condition (27 C°) are achieved.


Sign in / Sign up

Export Citation Format

Share Document