Effect of Water Absorption on Mechanical Properties of Kenaf and Kenaf Hybrid Polyester

2013 ◽  
Vol 465-466 ◽  
pp. 967-972 ◽  
Author(s):  
Z. Salleh ◽  
Koay Mei Hyie ◽  
M.N. Berhan ◽  
Yakub Md. Taib ◽  
N.R. Nik Roselina ◽  
...  

Natural fibre composite materials have been highlighted in recent years as they have the potential to mitigate the pollution and global warming. Kenaf is a high yield and fast growing plant. Kenaf does not require a lot of energy in production. Furthermore, the kenaf plant can absorb carbon dioxide when breathing. The objective of this paper is to relate the effect of different environment to the mechanical properties of kenaf and kenaf hybrid (fiberglass) polyester composites for 60 days period. Kenaf composite (containing 20 wt% of Kenaf fibres) and kenaf hybrid (containing 20 wt% kenaf fibre and 16 wt% fiberglass) were produced in cold press hand lay-up technique and then cured for 24 hours. The specimens were cut as required in EN ISO 527. The specimens were immersed in 3 different water sources, which were rain water, salt water and tap water. Tensile and hardness test were conducted to study the mechanical properties at 10, 20, 30, 40, 50 and 60 days. Both kenaf polyester and kenaf hybrid polyester show reduction on mechanical properties after immersion in the solutions. Kenaf polyester and kenaf hybrid polyester followed fickian behaviour after 40 days water immersion.

Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.


2020 ◽  
pp. 002199832098004
Author(s):  
M Hussain ◽  
A Imad ◽  
A Saouab ◽  
T Kanit ◽  
Y Nawab ◽  
...  

Fibre metal laminates (FML) are being used in automotive, aerospace and naval applications due to their light weight and superior performance. The FMLs are made by sandwiching composite with metal. The environmental concerns due to non-biodegradability of such structures, lead to the development of FML containing natural fibre composites. Natural fibres composite, despite having good damping properties have overall poor mechanical properties. However, this aspect can be improved by weaving the fibres in 3 D pattern. In literature, FML made using 3 D woven jute composites is never reported. Furthermore, no literature is found on adhesion of natural fibre composite-metal bonding. In this paper, development of novel 3 D Jute Reinforced natural fibre Aluminium Laminates (JuRALs) is reported. Furthermore, the effect of 3 D weaving pattern and metal-composite bonding on mechanical properties and failure mechanism of the developed samples is also discussed in detail. The four-layered 3 D woven Jute fabric reinforcement was made using four interlocking patterns. The composites and JuRALs were fabricated using epoxy resin by vacuum infusion technique. The surface of aluminium was treated using phosphoric acid anodizing. Tensile, flexural and T-peel tests were performed according to ASTM testing method using Z100 All-round, Zwick Roell. The results showed that out of four types of used reinforcements, the through-thickness composites had better tensile properties while layer-to-layer composite had better flexural properties. The tensile and flexural properties of JuRALs made with through-thickness interlock reinforcement were better as compared to layer-to-layer interlock reinforcement. The T-peel results depicted that the constituent materials influenced the metal-composite adhesion properties, rather the type of 3 D structure.


2013 ◽  
Vol 718-720 ◽  
pp. 63-68 ◽  
Author(s):  
Raja R. Niranjan ◽  
S. Junaid Kokan ◽  
R. Sathya Narayanan ◽  
S. Rajesh ◽  
V.M. Manickavasagam ◽  
...  

The natural fibre composite materials are nowadays playing a vital role in replacing the conventional and synthetic materials for industrial applications. This paper proposes a natural fiber composite made of Abaca fibre as reinforcing agent with Epoxy resin as the matrix, manufactured using Hand Lay-up method. Glass Fiber Reinforced Plastics (woven rovings) are used to improve the surface finish and impart more strength and stiffness to natural fibers. In this work, the fibers are arranged in alternative layers of abaca in horizontal and vertical orientation. The mechanical properties of the composite are determined by testing the samples for tensile and flexural strength. It is observed that the tensile strength of the composite material is dependent on the strength of the natural fiber and also on the interfacial adhesion between the reinforcement and the matrix. The composite is developed for automobile dashboard/mudguard application. It may also be extended to biomedical, electronics and sports goods manufacturing. It can also be used in marine products due to excellent resistance of abaca to salt water damage since the tensile strength when it is wet.


JTAM ROTARY ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 149
Author(s):  
Dwi Herizen ◽  
Rudi Siswanto

SUS 630 memiliki kekerasan 30,9 HRC dan kandungan Chromium 12% berdasarkan pemakaiannya di PT. Pupuk Kalimantan Timur merekomendasikan kekerasan sebesar 55 HRC, untuk meningkatkan kekerasan material dapat dilakukan dengan teknik material engineering yaitu Hardening. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi waktu tahan dan media pendingin terhadap kekerasan dan mikrostruktur baja sus 630. Proses pengerasan dilakukan hingga mencapai suhu 1020 0C kemudian waktu tahan dengan variasi 10, 20, 30, 40, dan 50 menit kemudian dicelupkan ke dalam air, air garam, dan minyak sampai suhu kamar. Struktur mikro diuji menggunakan mikroskop optik dengan perbesaran 400x dan kekerasan menggunakan kekerasan Rockwell C dengan beban 150 kg. Pengamatan struktur mikro setelah pengerasan struktur yang terbentuk adalah bilah martenstie, sisa austenit, dan karbida logam. Hasil uji kekerasan tertinggi pada media pendingin air (34,2 HRC), air asin (34,2 HRC), dan minyak (34,1 HRC) dan bahan baku (30,9 HRC). Dari penelitian ini dapat disimpulkan bahwa proses pengerasan dapat meningkatkan nilai kekerasan. SUS 630 Steel hardness is 30.9 HRC and Chromium content is 12%, based on its use at PT. Pupuk Kalimantan Timur recommended a hardness of 55 HRC, to increase material hardness can be done by means of material engineering, namely Hardening. The aim of the study was to determine the effect of variations in holding time and cooling media on the hardness and microstructure of steel sus 630. The hardening process was carried out to reach 1020 0C then holding time with variations of 10, 20, 30, 40, and 50 minutes then dipped into water , salt water, and oil to room temperature. Microstructure was tested using an optical microscope with 400x magnification and hardness using Rockwell C hardness with a load of 150 kg. The observation of the microstructure after hardening of the structure formed is the martenstie lath, residual austenite, and metal carbide. The hardness test results were highest in water cooling media (34.2 HRC), salt water (34.2 HRC), and oil (34.1 HRC) and raw material (30.9 HRC). From this study it can be concluded that the hardening process can increase the value of violence.


Kenaf fibres have acquired enormous attention in recent years, owing to their economic viability and environmental acceptability. Kenaf (natural) fibres have been started to replace the glass fibre (synthetic) in mechanical, electrical applications and have been utilized in several applications of industrial engineering. The current study deals with water absorption of kenaf/glass fibre reinforced unsaturated polyester composite materials used in high voltage polymeric insulator rods. The kenaf/glass hybrid composites were based on 20%, 30% and 40%(by volume) of kenaf fibers replacement glass fibres with modified 60 vol.% unsaturated polyester resins. The composites were immersedin distilled water at room temperature, and composites resistance to water absorption in terms of the rate of water absorption was determined.A considerable difference in the properties of water absorption of the hybrid composite was found demonstrating that the water absorption effect on the characteristics of insulator rods depends on the arrangement and volume fraction of kenaf fibre of the composite used. Based on the results obtained, a slight effect of water absorption on pure glass fibre composite (control) was observed. The addition of kenaf fibre on glass fibre composite rod increased the water absorption of the composite. It was shown that glass fibres surrounding kena ffibre reduced water absorption. Despite the fact that 40 vol.% of kenaf fibre composite had the highest natural fibre content, it showed the lowest water absorption because of its arrangement on all composite diameters, and also because of being surrounded by glass fibres. All of the materials reached equilibrium and ceased to absorb water after 300 hours


2021 ◽  
Author(s):  
Hamdi LAOUICI ◽  
Asma Benkhelladi ◽  
Ali Bouchoucha

Abstract The main objective and the originality of this work are to create a hybrid-natural fibre composite by the RMS method. Hybrid composites are manufactured by combining two or more dissimilar kinds of fibre in a single matrix. In the first section, Response Surface Methodology (RSM) using a Box-Behnken experimental design and the Analysis of Variance (ANOVA) are applied to investigate the effects of the type of fibres, chemical treatment, volume fraction and treatment time on the mechanical properties (ultimate tensile strength and Young’s modulus) in the tensile quasi-static loading when used two resins namely, epoxy and polyester. In the studied range, statistical analysis of the results showed that selected variables had a significant effect on the mechanical properties, except the treatment time that has a very weak significance effect on the mechanical properties. Then, to maximize the mechanical properties, the optimal conditions coded by RSM were found: the type of fibres (X 1 ) of [-0.28 and -0.33], the chemical treatment (X 2 ) of -1, the volume fraction of fibre (X 3 ) of 1 and the treatment duration (X 4 ) of [-0.97 and -1] for epoxy resin matrix. Similarly, when used the polyester resin matrix; the type of fibres (X 1 ) of -0.26, the chemical treatment (X 2 ) of -1, the volume fraction (X 3 ) of 0.99 and the sinking time (X 4 ) of [-0.94 and -0.93]. The obtained optimum parameters were confirmed experimentally in the second section


2011 ◽  
Vol 471-472 ◽  
pp. 781-785 ◽  
Author(s):  
Hazleen Anuar ◽  
Ahmad Zuraida ◽  
Bálint Morlin ◽  
József Gábor Kovács

This paper reported the interfacial shear strength (IFSS) between kenaf fibre (KF) and polylactic acid (PLA) matrix which was measured using microbond tests device. The value of IFSS obtained in PLA-KF is comparable to other polymer with natural fibre reinforcements. The properties of single kenaf fibre was determined from tensile tests and also described in this paper. From single kenaf fibre properties, various mechanical properties can be estimated for various applications.


2015 ◽  
Vol 1113 ◽  
pp. 68-73 ◽  
Author(s):  
Noor Haznida Bakar ◽  
Koay Mei Hyie ◽  
Anizah Kalam ◽  
Z. Salleh ◽  
Noel Imang ◽  
...  

This research was carried out to investigate the mechanical properties of hybridization composite material which used treated kenaf long fibre with Kevlar reinforcement and polyester as matrix. The purpose of this research is to improve the tensile strength and impact resistance quality of kenaf fibre, so it can be widely used in automotive, military and marine application. From this study, hybrid composites were fabricated by hand lay up and cold press method. The hybrid composites were studied by experimental using Instron Universal Testing Machine according to the standard ASTM D3039. Impact test were conducted using drop tower device according to the standard ASTM D3763. It is clearly observed that the mechanical properties were increased with the addition of weight percentage of woven Kevlar in the kenaf composites. The highest energy was recorded at by hybrid composite in combination of 20 wt% Kevlar. The structure observation of impacted hybrid samples showed that as the impact energy increased, the energy absorbed was also increased. It is found that reinforcing kenaf fibre composite with woven Kevlar can improve mechanical properties of kenaf fibre.


2013 ◽  
Vol 10 (5) ◽  
pp. 405-410 ◽  
Author(s):  
C. Pang ◽  
R. Shanks ◽  
K. Ing ◽  
F. Daver

Due to positive impact on the environment, biodegradable composite materials are of growing interest. This study used cellulose acetate, a derivative of cellulose, as the matrix for its solubility and flexibility. Kenaf composites have been used in furniture, ceiling panels, and fences. The aim is to prepare composites with plasticized cellulose acetate and natural fibre. The kenaf fibres were surface treated to remove impurities, in particular, hemicellulose, wax, and lignin. Chopped kenaf was added to dissolve cellulose acetate and cast on a Petri dish. After solvent has evaporated, the composite was compression moulded. The thermal and mechanical properties of the kenaf cellulose acetate composite were characterised. From thermogravimetry, the composites were shown to be stable until moisture began evaporating. As a hydrophilic material, cellulose is sensitive to moisture. The mechanical properties of the composites were analysed under high humidity. Dynamic mechanical analysis showed that these properties changed slightly with humidity.


Sign in / Sign up

Export Citation Format

Share Document