Development of an Efficient Thermal Transfer Structure in Rapid Heat Cycle Molding

2011 ◽  
Vol 181-182 ◽  
pp. 1025-1030
Author(s):  
Zeng Wei Fan ◽  
Xiao Hong Ge ◽  
Hong Wu Huang ◽  
Hui Li

The efficiency of the orientation thermal transfer is the key in rapid heat cycle molding (RHCM) technology, because it significantly affects the energy consumption, productivity and the quality of the final polymer parts. Therefore, the thermal response of the integral mold insert in SRHCM process has been simulated by ANSYS, and a novel thermal transfer structure in the form of combined mold insert with insulation layer has been developed to reduce the energy waste. The milled U-grooves act as thermal transfer channels in this structure, which can be manufactured conveniently to obtain high surface quality easily. The simulation results show that the novel structure can save energy consumption evidently, that the heating time is reduced by 35.7 percent, and that the cooling time is reduced by 24.9 percent compared with the unmodified one.

2021 ◽  
Vol 11 (6) ◽  
pp. 2507
Author(s):  
Zina T. Alkanan ◽  
Ammar B. Altemimi ◽  
Asaad R. S. Al-Hilphy ◽  
Dennis G. Watson ◽  
Anubhav Pratap-Singh

Various technologies have been evaluated as alternatives to conventional heating for pasteurization and sterilization of foods. Ohmic heating of food products, achieved by passage of an alternating current through food, has emerged as a potential technology with comparable performance and several advantages. Ohmic heating works faster and consumes less energy compared to conventional heating. Key characteristics of ohmic heating are homogeneity of heating, shorter heating time, low energy consumption, and improved product quality and food safety. Energy consumption of ohmic heating was measured as 4.6–5.3 times lower than traditional heating. Many food processes, including pasteurization, roasting, boiling, cooking, drying, sterilization, peeling, microbiological inhibition, and recovery of polyphenol and antioxidants have employed ohmic heating. Herein, we review the theoretical basis for ohmic treatment of food and the interaction of ohmic technology with food ingredients. Recent work in the last seven years on the effect of ohmic heating on food sensory properties, bioactive compound levels, microbial inactivation, and physico-chemical changes are summarized as a convenient reference for researchers and food scientists and engineers.


Author(s):  
Lukas Seeholzer ◽  
Stefan Süssmaier ◽  
Fabian Kneubühler ◽  
Konrad Wegener

AbstractEspecially for slicing hard and brittle materials, wire sawing with electroplated diamond wires is widely used since it combines a high surface quality with a minimum kerf loss. Furthermore, it allows a high productivity by machining multiple workpieces simultaneously. During the machining operation, the wire/workpiece interaction and thus the material removal conditions with the resulting workpiece quality are determined by the material properties and the process and tool parameters. However, applied to machining of carbon fibre reinforced polymers (CFRP), the process complexity potentially increases due to the anisotropic material properties, the elastic spring back potential of the material, and the distinct mechanical wear due to the highly abrasive carbon fibres. Therefore, this experimental study analyses different combinations of influencing factors with respect to process forces, workpiece surface temperatures at the wire entrance, and the surface quality in wire sawing unidirectional CFRP material. As main influencing factors, the cutting and feed speeds, the density of diamond grains on the wire, the workpiece thickness, and the fibre orientation of the CFRP material are analysed and discussed. For the tested parameter settings, it is found that while the influence of the grain density is negligible, workpiece thickness, cutting and feed speeds affect the process substantially. In addition, higher process forces and workpiece surface temperatures do not necessarily deteriorate the surface quality.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4265
Author(s):  
Bobo Li ◽  
Bowen Wang ◽  
Greg Zhu ◽  
Lijuan Zhang ◽  
Bingheng Lu

Aiming at handling the contradiction between power constraint of on-orbit manufacturing and the high energy input requirement of metal additive manufacturing (AM), this paper presents an AM process based on small-power metal fine wire feed, which produces thin-wall structures of height-to-width ratio up to 40 with core-forming power only about 50 W. In this process, thermal resistance was introduced to optimize the gradient parameters which greatly reduces the step effect of the typical AM process, succeeded in the surface roughness (Ra) less than 5 μm, comparable with that obtained by selective laser melting (SLM). After a 10 min electrolyte-plasma process, the roughness of the fabricated specimen was further reduced to 0.4 μm, without defects such as pores and cracks observed. The ultimate tensile strength of the specimens measured about 500 MPa, the relative density was 99.37, and the Vickers hardness was homogeneous. The results show that the proposed laser-Joule wire feed-direct metal deposition process (LJWF-DMD) is a very attractive solution for metal AM of high surface quality parts, particularly suitable for rapid prototyping for on-orbit AM in space.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2021 ◽  
Vol 15 ◽  
Author(s):  
Weishi Li ◽  
Kuanting Wang ◽  
Shiaofen Fang

Background: Selective laser melting is the best-established additive manufacturing technology for high-quality metal part manufacturing. However, the widespread acceptance of the technology is still underachieved, especially in critical applications, due to the absence of a thorough understanding of the technology, although several benchmark test artifacts have been developed to characterize the performance of selective laser melting machines. Objective: The objective of this paper is to inspire new designs of benchmark test artifacts to understand the selective laser melting process better and promote the acceptance of the selective laser melting technology. Method: The existing benchmark test artifacts for selective laser melting are analyzed comparatively, and the design guidelines are discussed. Results: The modular approach should still be adopted in designing new benchmark test artifacts in the future, and task-specific test artifacts may also need to be considered further to validate the machine performance for critical applications. The inclusion of the design model in the manufactured artifact, instead of the conformance to the design specifications, should be evaluated after the artifact is measured for the applications requiring high-dimensional accuracy and high surface quality. Conclusion: The benchmark test artifact for selective laser melting is still under development, and a breakthrough of the measuring technology for internal and/or inaccessible features will be beneficial for understanding the technology.


2017 ◽  
Vol 36 (3) ◽  
pp. 151-166 ◽  
Author(s):  
Christian Hopmann ◽  
Nicolai Lammert ◽  
Yuxiao Zhang

Thermoplastic foam injection moulding offers various advantages for both processing and product design. Despite its many benefits, the moderate surface quality still constitutes a major disadvantage of this process. The mould temperature can be controlled dynamically to improve the surface quality. Different dynamic temperature control strategies are employed and analysed regarding their effectiveness and scope of application. Mould temperatures above the specific material transition temperatures allow the surface defects to be cured and enable the production of foamed thermoplastic parts with surface qualities comparable to those of the compact reference samples. The high mould temperatures during the injection phase alter the foam structure and the skin layer thicknesses, which impacts the mechanical properties.


2019 ◽  
Vol 3 (3) ◽  
pp. 267
Author(s):  
Andi Asrul Sani ◽  
Adelia Enjelina Matondang ◽  
Guruh Kristiadi Kurniawan ◽  
Anggi Mardiyanto

Abstract: The use of glass material should consider the comfort of space in the building. Field of glass is needed as natural lighting and visual facilities between the occupants and the surrounding environment. Its function as natural lighting is often accompanied by an increase in temperature in buildings, considering that Indonesia is a tropical country. Building temperatures that increase due to incoming sunlight can cause discomfort to building occupants. Such conditions make building occupants use air conditioner (AC). The use of air conditioners can increase the value of building energy consumption. For this reason, research on the value of heat transfer in buildings or the value of OTTV (Overall Thermal Transfer Value). OTTV value calculation is done by manual calculation. Bandar Lampung City lecture building at the Sumatra Institute of Technology was chosen as the object of this study. From the results of the study found that the value of heat transfer of a building or OTTV (Overall Thermal Transfer Value) is influenced by the factor of the ratio of the window area to the facade or WWR (Window Wall Ratio) and the shading factor (Shading Coefficient).(Keywords: Keyword: energy consumption, building energy, glass. Abstract: Penggunaan material kaca semestinya mempertimbangkan kenyamanan ruang dalam bangunan. Bidang kaca diperlukan sebagai pencahayaan alami dan sarana visual antara penghuni dan lingkungan sekitar. Fungsinya sebagai pencahayaan alami seringkali disertai dengan peningkatan temperatur pada bangunan, mengingat Indonesia merupakan negara yang beriklim tropis. Temperatur bangunan yang meningkat akibat dari radiasi sinar matahari yang masuk dapat menyebabkan ketidaknyamanan bagi penghuni bangunan. Kondisi seperti itu membuat penghuni bangunan menggunakan air conditioner (AC). Penggunaan air conditioner tersebut dapat meningkatkan nilai konsumsi energi bangunan. Untuk  itu dilakukan penelitian mengenai nilai perpindahan panas dalam bangunan atau nilai OTTV (Overall Thermal Transfer Value). Penghitungan nilai OTTV dilakukan dengan penghitungan manual. Gedung kuliah Kota Bandar Lampung di Institut Teknologi Sumatera di pilih sebagai objek dalam penelitian ini. Dari hasil penelitian ditemukan bahwa nilai perpindahan panas suatu bangunan atau OTTV (Overall Thermal Transfer Value) dipengaruhi oleh faktor nilai perbandingan luas jendela terhadap bidang fasad atau WWR (Window Wall Ratio) dan faktor pembayangan (Shading Coefficient).Kata kunci : konsumsi energi, energi bangunan, kaca.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document